| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lsmcss.c | ⊢ 𝐶  =  ( ClSubSp ‘ 𝑊 ) | 
						
							| 2 |  | lsmcss.j | ⊢ 𝑉  =  ( Base ‘ 𝑊 ) | 
						
							| 3 |  | lsmcss.o | ⊢  ⊥   =  ( ocv ‘ 𝑊 ) | 
						
							| 4 |  | lsmcss.p | ⊢  ⊕   =  ( LSSum ‘ 𝑊 ) | 
						
							| 5 |  | lsmcss.1 | ⊢ ( 𝜑  →  𝑊  ∈  PreHil ) | 
						
							| 6 |  | lsmcss.2 | ⊢ ( 𝜑  →  𝑆  ⊆  𝑉 ) | 
						
							| 7 |  | lsmcss.3 | ⊢ ( 𝜑  →  (  ⊥  ‘ (  ⊥  ‘ 𝑆 ) )  ⊆  ( 𝑆  ⊕  (  ⊥  ‘ 𝑆 ) ) ) | 
						
							| 8 | 7 | sseld | ⊢ ( 𝜑  →  ( 𝑥  ∈  (  ⊥  ‘ (  ⊥  ‘ 𝑆 ) )  →  𝑥  ∈  ( 𝑆  ⊕  (  ⊥  ‘ 𝑆 ) ) ) ) | 
						
							| 9 |  | phllmod | ⊢ ( 𝑊  ∈  PreHil  →  𝑊  ∈  LMod ) | 
						
							| 10 | 5 9 | syl | ⊢ ( 𝜑  →  𝑊  ∈  LMod ) | 
						
							| 11 | 2 3 | ocvss | ⊢ (  ⊥  ‘ 𝑆 )  ⊆  𝑉 | 
						
							| 12 | 11 | a1i | ⊢ ( 𝜑  →  (  ⊥  ‘ 𝑆 )  ⊆  𝑉 ) | 
						
							| 13 |  | eqid | ⊢ ( +g ‘ 𝑊 )  =  ( +g ‘ 𝑊 ) | 
						
							| 14 | 2 13 4 | lsmelvalx | ⊢ ( ( 𝑊  ∈  LMod  ∧  𝑆  ⊆  𝑉  ∧  (  ⊥  ‘ 𝑆 )  ⊆  𝑉 )  →  ( 𝑥  ∈  ( 𝑆  ⊕  (  ⊥  ‘ 𝑆 ) )  ↔  ∃ 𝑦  ∈  𝑆 ∃ 𝑧  ∈  (  ⊥  ‘ 𝑆 ) 𝑥  =  ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ) ) | 
						
							| 15 | 10 6 12 14 | syl3anc | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 𝑆  ⊕  (  ⊥  ‘ 𝑆 ) )  ↔  ∃ 𝑦  ∈  𝑆 ∃ 𝑧  ∈  (  ⊥  ‘ 𝑆 ) 𝑥  =  ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ) ) | 
						
							| 16 | 8 15 | sylibd | ⊢ ( 𝜑  →  ( 𝑥  ∈  (  ⊥  ‘ (  ⊥  ‘ 𝑆 ) )  →  ∃ 𝑦  ∈  𝑆 ∃ 𝑧  ∈  (  ⊥  ‘ 𝑆 ) 𝑥  =  ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ) ) | 
						
							| 17 | 5 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑦  ∈  𝑆  ∧  𝑧  ∈  (  ⊥  ‘ 𝑆 ) ) )  ∧  ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 )  ∈  (  ⊥  ‘ (  ⊥  ‘ 𝑆 ) ) )  →  𝑊  ∈  PreHil ) | 
						
							| 18 | 6 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑦  ∈  𝑆  ∧  𝑧  ∈  (  ⊥  ‘ 𝑆 ) ) )  ∧  ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 )  ∈  (  ⊥  ‘ (  ⊥  ‘ 𝑆 ) ) )  →  𝑆  ⊆  𝑉 ) | 
						
							| 19 |  | simplrl | ⊢ ( ( ( 𝜑  ∧  ( 𝑦  ∈  𝑆  ∧  𝑧  ∈  (  ⊥  ‘ 𝑆 ) ) )  ∧  ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 )  ∈  (  ⊥  ‘ (  ⊥  ‘ 𝑆 ) ) )  →  𝑦  ∈  𝑆 ) | 
						
							| 20 | 18 19 | sseldd | ⊢ ( ( ( 𝜑  ∧  ( 𝑦  ∈  𝑆  ∧  𝑧  ∈  (  ⊥  ‘ 𝑆 ) ) )  ∧  ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 )  ∈  (  ⊥  ‘ (  ⊥  ‘ 𝑆 ) ) )  →  𝑦  ∈  𝑉 ) | 
						
							| 21 |  | simplrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑦  ∈  𝑆  ∧  𝑧  ∈  (  ⊥  ‘ 𝑆 ) ) )  ∧  ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 )  ∈  (  ⊥  ‘ (  ⊥  ‘ 𝑆 ) ) )  →  𝑧  ∈  (  ⊥  ‘ 𝑆 ) ) | 
						
							| 22 | 11 21 | sselid | ⊢ ( ( ( 𝜑  ∧  ( 𝑦  ∈  𝑆  ∧  𝑧  ∈  (  ⊥  ‘ 𝑆 ) ) )  ∧  ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 )  ∈  (  ⊥  ‘ (  ⊥  ‘ 𝑆 ) ) )  →  𝑧  ∈  𝑉 ) | 
						
							| 23 |  | eqid | ⊢ ( Scalar ‘ 𝑊 )  =  ( Scalar ‘ 𝑊 ) | 
						
							| 24 |  | eqid | ⊢ ( ·𝑖 ‘ 𝑊 )  =  ( ·𝑖 ‘ 𝑊 ) | 
						
							| 25 |  | eqid | ⊢ ( +g ‘ ( Scalar ‘ 𝑊 ) )  =  ( +g ‘ ( Scalar ‘ 𝑊 ) ) | 
						
							| 26 | 23 24 2 13 25 | ipdir | ⊢ ( ( 𝑊  ∈  PreHil  ∧  ( 𝑦  ∈  𝑉  ∧  𝑧  ∈  𝑉  ∧  𝑧  ∈  𝑉 ) )  →  ( ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ( ·𝑖 ‘ 𝑊 ) 𝑧 )  =  ( ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ) | 
						
							| 27 | 17 20 22 22 26 | syl13anc | ⊢ ( ( ( 𝜑  ∧  ( 𝑦  ∈  𝑆  ∧  𝑧  ∈  (  ⊥  ‘ 𝑆 ) ) )  ∧  ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 )  ∈  (  ⊥  ‘ (  ⊥  ‘ 𝑆 ) ) )  →  ( ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ( ·𝑖 ‘ 𝑊 ) 𝑧 )  =  ( ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ) | 
						
							| 28 |  | eqid | ⊢ ( 0g ‘ ( Scalar ‘ 𝑊 ) )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) | 
						
							| 29 | 2 24 23 28 3 | ocvi | ⊢ ( ( 𝑧  ∈  (  ⊥  ‘ 𝑆 )  ∧  𝑦  ∈  𝑆 )  →  ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) | 
						
							| 30 | 21 19 29 | syl2anc | ⊢ ( ( ( 𝜑  ∧  ( 𝑦  ∈  𝑆  ∧  𝑧  ∈  (  ⊥  ‘ 𝑆 ) ) )  ∧  ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 )  ∈  (  ⊥  ‘ (  ⊥  ‘ 𝑆 ) ) )  →  ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) | 
						
							| 31 | 23 24 2 28 | iporthcom | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝑧  ∈  𝑉  ∧  𝑦  ∈  𝑉 )  →  ( ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) )  ↔  ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑧 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) | 
						
							| 32 | 17 22 20 31 | syl3anc | ⊢ ( ( ( 𝜑  ∧  ( 𝑦  ∈  𝑆  ∧  𝑧  ∈  (  ⊥  ‘ 𝑆 ) ) )  ∧  ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 )  ∈  (  ⊥  ‘ (  ⊥  ‘ 𝑆 ) ) )  →  ( ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑦 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) )  ↔  ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑧 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) | 
						
							| 33 | 30 32 | mpbid | ⊢ ( ( ( 𝜑  ∧  ( 𝑦  ∈  𝑆  ∧  𝑧  ∈  (  ⊥  ‘ 𝑆 ) ) )  ∧  ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 )  ∈  (  ⊥  ‘ (  ⊥  ‘ 𝑆 ) ) )  →  ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑧 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) | 
						
							| 34 | 33 | oveq1d | ⊢ ( ( ( 𝜑  ∧  ( 𝑦  ∈  𝑆  ∧  𝑧  ∈  (  ⊥  ‘ 𝑆 ) ) )  ∧  ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 )  ∈  (  ⊥  ‘ (  ⊥  ‘ 𝑆 ) ) )  →  ( ( 𝑦 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) )  =  ( ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) ) | 
						
							| 35 | 17 9 | syl | ⊢ ( ( ( 𝜑  ∧  ( 𝑦  ∈  𝑆  ∧  𝑧  ∈  (  ⊥  ‘ 𝑆 ) ) )  ∧  ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 )  ∈  (  ⊥  ‘ (  ⊥  ‘ 𝑆 ) ) )  →  𝑊  ∈  LMod ) | 
						
							| 36 | 23 | lmodfgrp | ⊢ ( 𝑊  ∈  LMod  →  ( Scalar ‘ 𝑊 )  ∈  Grp ) | 
						
							| 37 | 35 36 | syl | ⊢ ( ( ( 𝜑  ∧  ( 𝑦  ∈  𝑆  ∧  𝑧  ∈  (  ⊥  ‘ 𝑆 ) ) )  ∧  ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 )  ∈  (  ⊥  ‘ (  ⊥  ‘ 𝑆 ) ) )  →  ( Scalar ‘ 𝑊 )  ∈  Grp ) | 
						
							| 38 |  | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) )  =  ( Base ‘ ( Scalar ‘ 𝑊 ) ) | 
						
							| 39 | 23 24 2 38 | ipcl | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝑧  ∈  𝑉  ∧  𝑧  ∈  𝑉 )  →  ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑧 )  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) | 
						
							| 40 | 17 22 22 39 | syl3anc | ⊢ ( ( ( 𝜑  ∧  ( 𝑦  ∈  𝑆  ∧  𝑧  ∈  (  ⊥  ‘ 𝑆 ) ) )  ∧  ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 )  ∈  (  ⊥  ‘ (  ⊥  ‘ 𝑆 ) ) )  →  ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑧 )  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) | 
						
							| 41 | 38 25 28 | grplid | ⊢ ( ( ( Scalar ‘ 𝑊 )  ∈  Grp  ∧  ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑧 )  ∈  ( Base ‘ ( Scalar ‘ 𝑊 ) ) )  →  ( ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) )  =  ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) | 
						
							| 42 | 37 40 41 | syl2anc | ⊢ ( ( ( 𝜑  ∧  ( 𝑦  ∈  𝑆  ∧  𝑧  ∈  (  ⊥  ‘ 𝑆 ) ) )  ∧  ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 )  ∈  (  ⊥  ‘ (  ⊥  ‘ 𝑆 ) ) )  →  ( ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ( +g ‘ ( Scalar ‘ 𝑊 ) ) ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) )  =  ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) | 
						
							| 43 | 27 34 42 | 3eqtrd | ⊢ ( ( ( 𝜑  ∧  ( 𝑦  ∈  𝑆  ∧  𝑧  ∈  (  ⊥  ‘ 𝑆 ) ) )  ∧  ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 )  ∈  (  ⊥  ‘ (  ⊥  ‘ 𝑆 ) ) )  →  ( ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ( ·𝑖 ‘ 𝑊 ) 𝑧 )  =  ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑧 ) ) | 
						
							| 44 |  | simpr | ⊢ ( ( ( 𝜑  ∧  ( 𝑦  ∈  𝑆  ∧  𝑧  ∈  (  ⊥  ‘ 𝑆 ) ) )  ∧  ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 )  ∈  (  ⊥  ‘ (  ⊥  ‘ 𝑆 ) ) )  →  ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 )  ∈  (  ⊥  ‘ (  ⊥  ‘ 𝑆 ) ) ) | 
						
							| 45 | 2 24 23 28 3 | ocvi | ⊢ ( ( ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 )  ∈  (  ⊥  ‘ (  ⊥  ‘ 𝑆 ) )  ∧  𝑧  ∈  (  ⊥  ‘ 𝑆 ) )  →  ( ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ( ·𝑖 ‘ 𝑊 ) 𝑧 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) | 
						
							| 46 | 44 21 45 | syl2anc | ⊢ ( ( ( 𝜑  ∧  ( 𝑦  ∈  𝑆  ∧  𝑧  ∈  (  ⊥  ‘ 𝑆 ) ) )  ∧  ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 )  ∈  (  ⊥  ‘ (  ⊥  ‘ 𝑆 ) ) )  →  ( ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 ) ( ·𝑖 ‘ 𝑊 ) 𝑧 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) | 
						
							| 47 | 43 46 | eqtr3d | ⊢ ( ( ( 𝜑  ∧  ( 𝑦  ∈  𝑆  ∧  𝑧  ∈  (  ⊥  ‘ 𝑆 ) ) )  ∧  ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 )  ∈  (  ⊥  ‘ (  ⊥  ‘ 𝑆 ) ) )  →  ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑧 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) | 
						
							| 48 |  | eqid | ⊢ ( 0g ‘ 𝑊 )  =  ( 0g ‘ 𝑊 ) | 
						
							| 49 | 23 24 2 28 48 | ipeq0 | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝑧  ∈  𝑉 )  →  ( ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑧 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) )  ↔  𝑧  =  ( 0g ‘ 𝑊 ) ) ) | 
						
							| 50 | 17 22 49 | syl2anc | ⊢ ( ( ( 𝜑  ∧  ( 𝑦  ∈  𝑆  ∧  𝑧  ∈  (  ⊥  ‘ 𝑆 ) ) )  ∧  ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 )  ∈  (  ⊥  ‘ (  ⊥  ‘ 𝑆 ) ) )  →  ( ( 𝑧 ( ·𝑖 ‘ 𝑊 ) 𝑧 )  =  ( 0g ‘ ( Scalar ‘ 𝑊 ) )  ↔  𝑧  =  ( 0g ‘ 𝑊 ) ) ) | 
						
							| 51 | 47 50 | mpbid | ⊢ ( ( ( 𝜑  ∧  ( 𝑦  ∈  𝑆  ∧  𝑧  ∈  (  ⊥  ‘ 𝑆 ) ) )  ∧  ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 )  ∈  (  ⊥  ‘ (  ⊥  ‘ 𝑆 ) ) )  →  𝑧  =  ( 0g ‘ 𝑊 ) ) | 
						
							| 52 | 51 | oveq2d | ⊢ ( ( ( 𝜑  ∧  ( 𝑦  ∈  𝑆  ∧  𝑧  ∈  (  ⊥  ‘ 𝑆 ) ) )  ∧  ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 )  ∈  (  ⊥  ‘ (  ⊥  ‘ 𝑆 ) ) )  →  ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 )  =  ( 𝑦 ( +g ‘ 𝑊 ) ( 0g ‘ 𝑊 ) ) ) | 
						
							| 53 |  | lmodgrp | ⊢ ( 𝑊  ∈  LMod  →  𝑊  ∈  Grp ) | 
						
							| 54 | 10 53 | syl | ⊢ ( 𝜑  →  𝑊  ∈  Grp ) | 
						
							| 55 | 54 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  ( 𝑦  ∈  𝑆  ∧  𝑧  ∈  (  ⊥  ‘ 𝑆 ) ) )  ∧  ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 )  ∈  (  ⊥  ‘ (  ⊥  ‘ 𝑆 ) ) )  →  𝑊  ∈  Grp ) | 
						
							| 56 | 2 13 48 | grprid | ⊢ ( ( 𝑊  ∈  Grp  ∧  𝑦  ∈  𝑉 )  →  ( 𝑦 ( +g ‘ 𝑊 ) ( 0g ‘ 𝑊 ) )  =  𝑦 ) | 
						
							| 57 | 55 20 56 | syl2anc | ⊢ ( ( ( 𝜑  ∧  ( 𝑦  ∈  𝑆  ∧  𝑧  ∈  (  ⊥  ‘ 𝑆 ) ) )  ∧  ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 )  ∈  (  ⊥  ‘ (  ⊥  ‘ 𝑆 ) ) )  →  ( 𝑦 ( +g ‘ 𝑊 ) ( 0g ‘ 𝑊 ) )  =  𝑦 ) | 
						
							| 58 | 52 57 | eqtrd | ⊢ ( ( ( 𝜑  ∧  ( 𝑦  ∈  𝑆  ∧  𝑧  ∈  (  ⊥  ‘ 𝑆 ) ) )  ∧  ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 )  ∈  (  ⊥  ‘ (  ⊥  ‘ 𝑆 ) ) )  →  ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 )  =  𝑦 ) | 
						
							| 59 | 58 19 | eqeltrd | ⊢ ( ( ( 𝜑  ∧  ( 𝑦  ∈  𝑆  ∧  𝑧  ∈  (  ⊥  ‘ 𝑆 ) ) )  ∧  ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 )  ∈  (  ⊥  ‘ (  ⊥  ‘ 𝑆 ) ) )  →  ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 )  ∈  𝑆 ) | 
						
							| 60 | 59 | ex | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  𝑆  ∧  𝑧  ∈  (  ⊥  ‘ 𝑆 ) ) )  →  ( ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 )  ∈  (  ⊥  ‘ (  ⊥  ‘ 𝑆 ) )  →  ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 )  ∈  𝑆 ) ) | 
						
							| 61 |  | eleq1 | ⊢ ( 𝑥  =  ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 )  →  ( 𝑥  ∈  (  ⊥  ‘ (  ⊥  ‘ 𝑆 ) )  ↔  ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 )  ∈  (  ⊥  ‘ (  ⊥  ‘ 𝑆 ) ) ) ) | 
						
							| 62 |  | eleq1 | ⊢ ( 𝑥  =  ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 )  →  ( 𝑥  ∈  𝑆  ↔  ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 )  ∈  𝑆 ) ) | 
						
							| 63 | 61 62 | imbi12d | ⊢ ( 𝑥  =  ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 )  →  ( ( 𝑥  ∈  (  ⊥  ‘ (  ⊥  ‘ 𝑆 ) )  →  𝑥  ∈  𝑆 )  ↔  ( ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 )  ∈  (  ⊥  ‘ (  ⊥  ‘ 𝑆 ) )  →  ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 )  ∈  𝑆 ) ) ) | 
						
							| 64 | 60 63 | syl5ibrcom | ⊢ ( ( 𝜑  ∧  ( 𝑦  ∈  𝑆  ∧  𝑧  ∈  (  ⊥  ‘ 𝑆 ) ) )  →  ( 𝑥  =  ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 )  →  ( 𝑥  ∈  (  ⊥  ‘ (  ⊥  ‘ 𝑆 ) )  →  𝑥  ∈  𝑆 ) ) ) | 
						
							| 65 | 64 | rexlimdvva | ⊢ ( 𝜑  →  ( ∃ 𝑦  ∈  𝑆 ∃ 𝑧  ∈  (  ⊥  ‘ 𝑆 ) 𝑥  =  ( 𝑦 ( +g ‘ 𝑊 ) 𝑧 )  →  ( 𝑥  ∈  (  ⊥  ‘ (  ⊥  ‘ 𝑆 ) )  →  𝑥  ∈  𝑆 ) ) ) | 
						
							| 66 | 16 65 | syld | ⊢ ( 𝜑  →  ( 𝑥  ∈  (  ⊥  ‘ (  ⊥  ‘ 𝑆 ) )  →  ( 𝑥  ∈  (  ⊥  ‘ (  ⊥  ‘ 𝑆 ) )  →  𝑥  ∈  𝑆 ) ) ) | 
						
							| 67 | 66 | pm2.43d | ⊢ ( 𝜑  →  ( 𝑥  ∈  (  ⊥  ‘ (  ⊥  ‘ 𝑆 ) )  →  𝑥  ∈  𝑆 ) ) | 
						
							| 68 | 67 | ssrdv | ⊢ ( 𝜑  →  (  ⊥  ‘ (  ⊥  ‘ 𝑆 ) )  ⊆  𝑆 ) | 
						
							| 69 | 2 1 3 | iscss2 | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝑆  ⊆  𝑉 )  →  ( 𝑆  ∈  𝐶  ↔  (  ⊥  ‘ (  ⊥  ‘ 𝑆 ) )  ⊆  𝑆 ) ) | 
						
							| 70 | 5 6 69 | syl2anc | ⊢ ( 𝜑  →  ( 𝑆  ∈  𝐶  ↔  (  ⊥  ‘ (  ⊥  ‘ 𝑆 ) )  ⊆  𝑆 ) ) | 
						
							| 71 | 68 70 | mpbird | ⊢ ( 𝜑  →  𝑆  ∈  𝐶 ) |