| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cssmre.v | ⊢ 𝑉  =  ( Base ‘ 𝑊 ) | 
						
							| 2 |  | cssmre.c | ⊢ 𝐶  =  ( ClSubSp ‘ 𝑊 ) | 
						
							| 3 | 1 2 | cssss | ⊢ ( 𝑥  ∈  𝐶  →  𝑥  ⊆  𝑉 ) | 
						
							| 4 |  | velpw | ⊢ ( 𝑥  ∈  𝒫  𝑉  ↔  𝑥  ⊆  𝑉 ) | 
						
							| 5 | 3 4 | sylibr | ⊢ ( 𝑥  ∈  𝐶  →  𝑥  ∈  𝒫  𝑉 ) | 
						
							| 6 | 5 | a1i | ⊢ ( 𝑊  ∈  PreHil  →  ( 𝑥  ∈  𝐶  →  𝑥  ∈  𝒫  𝑉 ) ) | 
						
							| 7 | 6 | ssrdv | ⊢ ( 𝑊  ∈  PreHil  →  𝐶  ⊆  𝒫  𝑉 ) | 
						
							| 8 | 1 2 | css1 | ⊢ ( 𝑊  ∈  PreHil  →  𝑉  ∈  𝐶 ) | 
						
							| 9 |  | intss1 | ⊢ ( 𝑧  ∈  𝑥  →  ∩  𝑥  ⊆  𝑧 ) | 
						
							| 10 |  | eqid | ⊢ ( ocv ‘ 𝑊 )  =  ( ocv ‘ 𝑊 ) | 
						
							| 11 | 10 | ocv2ss | ⊢ ( ∩  𝑥  ⊆  𝑧  →  ( ( ocv ‘ 𝑊 ) ‘ 𝑧 )  ⊆  ( ( ocv ‘ 𝑊 ) ‘ ∩  𝑥 ) ) | 
						
							| 12 | 10 | ocv2ss | ⊢ ( ( ( ocv ‘ 𝑊 ) ‘ 𝑧 )  ⊆  ( ( ocv ‘ 𝑊 ) ‘ ∩  𝑥 )  →  ( ( ocv ‘ 𝑊 ) ‘ ( ( ocv ‘ 𝑊 ) ‘ ∩  𝑥 ) )  ⊆  ( ( ocv ‘ 𝑊 ) ‘ ( ( ocv ‘ 𝑊 ) ‘ 𝑧 ) ) ) | 
						
							| 13 | 9 11 12 | 3syl | ⊢ ( 𝑧  ∈  𝑥  →  ( ( ocv ‘ 𝑊 ) ‘ ( ( ocv ‘ 𝑊 ) ‘ ∩  𝑥 ) )  ⊆  ( ( ocv ‘ 𝑊 ) ‘ ( ( ocv ‘ 𝑊 ) ‘ 𝑧 ) ) ) | 
						
							| 14 | 13 | ad2antll | ⊢ ( ( ( 𝑊  ∈  PreHil  ∧  𝑥  ⊆  𝐶  ∧  𝑥  ≠  ∅ )  ∧  ( 𝑦  ∈  ( ( ocv ‘ 𝑊 ) ‘ ( ( ocv ‘ 𝑊 ) ‘ ∩  𝑥 ) )  ∧  𝑧  ∈  𝑥 ) )  →  ( ( ocv ‘ 𝑊 ) ‘ ( ( ocv ‘ 𝑊 ) ‘ ∩  𝑥 ) )  ⊆  ( ( ocv ‘ 𝑊 ) ‘ ( ( ocv ‘ 𝑊 ) ‘ 𝑧 ) ) ) | 
						
							| 15 |  | simprl | ⊢ ( ( ( 𝑊  ∈  PreHil  ∧  𝑥  ⊆  𝐶  ∧  𝑥  ≠  ∅ )  ∧  ( 𝑦  ∈  ( ( ocv ‘ 𝑊 ) ‘ ( ( ocv ‘ 𝑊 ) ‘ ∩  𝑥 ) )  ∧  𝑧  ∈  𝑥 ) )  →  𝑦  ∈  ( ( ocv ‘ 𝑊 ) ‘ ( ( ocv ‘ 𝑊 ) ‘ ∩  𝑥 ) ) ) | 
						
							| 16 | 14 15 | sseldd | ⊢ ( ( ( 𝑊  ∈  PreHil  ∧  𝑥  ⊆  𝐶  ∧  𝑥  ≠  ∅ )  ∧  ( 𝑦  ∈  ( ( ocv ‘ 𝑊 ) ‘ ( ( ocv ‘ 𝑊 ) ‘ ∩  𝑥 ) )  ∧  𝑧  ∈  𝑥 ) )  →  𝑦  ∈  ( ( ocv ‘ 𝑊 ) ‘ ( ( ocv ‘ 𝑊 ) ‘ 𝑧 ) ) ) | 
						
							| 17 |  | simpl2 | ⊢ ( ( ( 𝑊  ∈  PreHil  ∧  𝑥  ⊆  𝐶  ∧  𝑥  ≠  ∅ )  ∧  ( 𝑦  ∈  ( ( ocv ‘ 𝑊 ) ‘ ( ( ocv ‘ 𝑊 ) ‘ ∩  𝑥 ) )  ∧  𝑧  ∈  𝑥 ) )  →  𝑥  ⊆  𝐶 ) | 
						
							| 18 |  | simprr | ⊢ ( ( ( 𝑊  ∈  PreHil  ∧  𝑥  ⊆  𝐶  ∧  𝑥  ≠  ∅ )  ∧  ( 𝑦  ∈  ( ( ocv ‘ 𝑊 ) ‘ ( ( ocv ‘ 𝑊 ) ‘ ∩  𝑥 ) )  ∧  𝑧  ∈  𝑥 ) )  →  𝑧  ∈  𝑥 ) | 
						
							| 19 | 17 18 | sseldd | ⊢ ( ( ( 𝑊  ∈  PreHil  ∧  𝑥  ⊆  𝐶  ∧  𝑥  ≠  ∅ )  ∧  ( 𝑦  ∈  ( ( ocv ‘ 𝑊 ) ‘ ( ( ocv ‘ 𝑊 ) ‘ ∩  𝑥 ) )  ∧  𝑧  ∈  𝑥 ) )  →  𝑧  ∈  𝐶 ) | 
						
							| 20 | 10 2 | cssi | ⊢ ( 𝑧  ∈  𝐶  →  𝑧  =  ( ( ocv ‘ 𝑊 ) ‘ ( ( ocv ‘ 𝑊 ) ‘ 𝑧 ) ) ) | 
						
							| 21 | 19 20 | syl | ⊢ ( ( ( 𝑊  ∈  PreHil  ∧  𝑥  ⊆  𝐶  ∧  𝑥  ≠  ∅ )  ∧  ( 𝑦  ∈  ( ( ocv ‘ 𝑊 ) ‘ ( ( ocv ‘ 𝑊 ) ‘ ∩  𝑥 ) )  ∧  𝑧  ∈  𝑥 ) )  →  𝑧  =  ( ( ocv ‘ 𝑊 ) ‘ ( ( ocv ‘ 𝑊 ) ‘ 𝑧 ) ) ) | 
						
							| 22 | 16 21 | eleqtrrd | ⊢ ( ( ( 𝑊  ∈  PreHil  ∧  𝑥  ⊆  𝐶  ∧  𝑥  ≠  ∅ )  ∧  ( 𝑦  ∈  ( ( ocv ‘ 𝑊 ) ‘ ( ( ocv ‘ 𝑊 ) ‘ ∩  𝑥 ) )  ∧  𝑧  ∈  𝑥 ) )  →  𝑦  ∈  𝑧 ) | 
						
							| 23 | 22 | expr | ⊢ ( ( ( 𝑊  ∈  PreHil  ∧  𝑥  ⊆  𝐶  ∧  𝑥  ≠  ∅ )  ∧  𝑦  ∈  ( ( ocv ‘ 𝑊 ) ‘ ( ( ocv ‘ 𝑊 ) ‘ ∩  𝑥 ) ) )  →  ( 𝑧  ∈  𝑥  →  𝑦  ∈  𝑧 ) ) | 
						
							| 24 | 23 | alrimiv | ⊢ ( ( ( 𝑊  ∈  PreHil  ∧  𝑥  ⊆  𝐶  ∧  𝑥  ≠  ∅ )  ∧  𝑦  ∈  ( ( ocv ‘ 𝑊 ) ‘ ( ( ocv ‘ 𝑊 ) ‘ ∩  𝑥 ) ) )  →  ∀ 𝑧 ( 𝑧  ∈  𝑥  →  𝑦  ∈  𝑧 ) ) | 
						
							| 25 |  | vex | ⊢ 𝑦  ∈  V | 
						
							| 26 | 25 | elint | ⊢ ( 𝑦  ∈  ∩  𝑥  ↔  ∀ 𝑧 ( 𝑧  ∈  𝑥  →  𝑦  ∈  𝑧 ) ) | 
						
							| 27 | 24 26 | sylibr | ⊢ ( ( ( 𝑊  ∈  PreHil  ∧  𝑥  ⊆  𝐶  ∧  𝑥  ≠  ∅ )  ∧  𝑦  ∈  ( ( ocv ‘ 𝑊 ) ‘ ( ( ocv ‘ 𝑊 ) ‘ ∩  𝑥 ) ) )  →  𝑦  ∈  ∩  𝑥 ) | 
						
							| 28 | 27 | ex | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝑥  ⊆  𝐶  ∧  𝑥  ≠  ∅ )  →  ( 𝑦  ∈  ( ( ocv ‘ 𝑊 ) ‘ ( ( ocv ‘ 𝑊 ) ‘ ∩  𝑥 ) )  →  𝑦  ∈  ∩  𝑥 ) ) | 
						
							| 29 | 28 | ssrdv | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝑥  ⊆  𝐶  ∧  𝑥  ≠  ∅ )  →  ( ( ocv ‘ 𝑊 ) ‘ ( ( ocv ‘ 𝑊 ) ‘ ∩  𝑥 ) )  ⊆  ∩  𝑥 ) | 
						
							| 30 |  | simp1 | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝑥  ⊆  𝐶  ∧  𝑥  ≠  ∅ )  →  𝑊  ∈  PreHil ) | 
						
							| 31 |  | intssuni | ⊢ ( 𝑥  ≠  ∅  →  ∩  𝑥  ⊆  ∪  𝑥 ) | 
						
							| 32 | 31 | 3ad2ant3 | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝑥  ⊆  𝐶  ∧  𝑥  ≠  ∅ )  →  ∩  𝑥  ⊆  ∪  𝑥 ) | 
						
							| 33 |  | simp2 | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝑥  ⊆  𝐶  ∧  𝑥  ≠  ∅ )  →  𝑥  ⊆  𝐶 ) | 
						
							| 34 | 7 | 3ad2ant1 | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝑥  ⊆  𝐶  ∧  𝑥  ≠  ∅ )  →  𝐶  ⊆  𝒫  𝑉 ) | 
						
							| 35 | 33 34 | sstrd | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝑥  ⊆  𝐶  ∧  𝑥  ≠  ∅ )  →  𝑥  ⊆  𝒫  𝑉 ) | 
						
							| 36 |  | sspwuni | ⊢ ( 𝑥  ⊆  𝒫  𝑉  ↔  ∪  𝑥  ⊆  𝑉 ) | 
						
							| 37 | 35 36 | sylib | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝑥  ⊆  𝐶  ∧  𝑥  ≠  ∅ )  →  ∪  𝑥  ⊆  𝑉 ) | 
						
							| 38 | 32 37 | sstrd | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝑥  ⊆  𝐶  ∧  𝑥  ≠  ∅ )  →  ∩  𝑥  ⊆  𝑉 ) | 
						
							| 39 | 1 2 10 | iscss2 | ⊢ ( ( 𝑊  ∈  PreHil  ∧  ∩  𝑥  ⊆  𝑉 )  →  ( ∩  𝑥  ∈  𝐶  ↔  ( ( ocv ‘ 𝑊 ) ‘ ( ( ocv ‘ 𝑊 ) ‘ ∩  𝑥 ) )  ⊆  ∩  𝑥 ) ) | 
						
							| 40 | 30 38 39 | syl2anc | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝑥  ⊆  𝐶  ∧  𝑥  ≠  ∅ )  →  ( ∩  𝑥  ∈  𝐶  ↔  ( ( ocv ‘ 𝑊 ) ‘ ( ( ocv ‘ 𝑊 ) ‘ ∩  𝑥 ) )  ⊆  ∩  𝑥 ) ) | 
						
							| 41 | 29 40 | mpbird | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝑥  ⊆  𝐶  ∧  𝑥  ≠  ∅ )  →  ∩  𝑥  ∈  𝐶 ) | 
						
							| 42 | 7 8 41 | ismred | ⊢ ( 𝑊  ∈  PreHil  →  𝐶  ∈  ( Moore ‘ 𝑉 ) ) |