| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mrccss.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
| 2 |
|
mrccss.o |
⊢ ⊥ = ( ocv ‘ 𝑊 ) |
| 3 |
|
mrccss.c |
⊢ 𝐶 = ( ClSubSp ‘ 𝑊 ) |
| 4 |
|
mrccss.f |
⊢ 𝐹 = ( mrCls ‘ 𝐶 ) |
| 5 |
1 3
|
cssmre |
⊢ ( 𝑊 ∈ PreHil → 𝐶 ∈ ( Moore ‘ 𝑉 ) ) |
| 6 |
5
|
adantr |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉 ) → 𝐶 ∈ ( Moore ‘ 𝑉 ) ) |
| 7 |
1 2
|
ocvocv |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉 ) → 𝑆 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) ) |
| 8 |
1 2
|
ocvss |
⊢ ( ⊥ ‘ 𝑆 ) ⊆ 𝑉 |
| 9 |
8
|
a1i |
⊢ ( 𝑆 ⊆ 𝑉 → ( ⊥ ‘ 𝑆 ) ⊆ 𝑉 ) |
| 10 |
1 3 2
|
ocvcss |
⊢ ( ( 𝑊 ∈ PreHil ∧ ( ⊥ ‘ 𝑆 ) ⊆ 𝑉 ) → ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) ∈ 𝐶 ) |
| 11 |
9 10
|
sylan2 |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉 ) → ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) ∈ 𝐶 ) |
| 12 |
4
|
mrcsscl |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑉 ) ∧ 𝑆 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) ∧ ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) ∈ 𝐶 ) → ( 𝐹 ‘ 𝑆 ) ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) ) |
| 13 |
6 7 11 12
|
syl3anc |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉 ) → ( 𝐹 ‘ 𝑆 ) ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) ) |
| 14 |
4
|
mrcssid |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑉 ) ∧ 𝑆 ⊆ 𝑉 ) → 𝑆 ⊆ ( 𝐹 ‘ 𝑆 ) ) |
| 15 |
5 14
|
sylan |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉 ) → 𝑆 ⊆ ( 𝐹 ‘ 𝑆 ) ) |
| 16 |
2
|
ocv2ss |
⊢ ( 𝑆 ⊆ ( 𝐹 ‘ 𝑆 ) → ( ⊥ ‘ ( 𝐹 ‘ 𝑆 ) ) ⊆ ( ⊥ ‘ 𝑆 ) ) |
| 17 |
2
|
ocv2ss |
⊢ ( ( ⊥ ‘ ( 𝐹 ‘ 𝑆 ) ) ⊆ ( ⊥ ‘ 𝑆 ) → ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) ⊆ ( ⊥ ‘ ( ⊥ ‘ ( 𝐹 ‘ 𝑆 ) ) ) ) |
| 18 |
15 16 17
|
3syl |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉 ) → ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) ⊆ ( ⊥ ‘ ( ⊥ ‘ ( 𝐹 ‘ 𝑆 ) ) ) ) |
| 19 |
4
|
mrccl |
⊢ ( ( 𝐶 ∈ ( Moore ‘ 𝑉 ) ∧ 𝑆 ⊆ 𝑉 ) → ( 𝐹 ‘ 𝑆 ) ∈ 𝐶 ) |
| 20 |
5 19
|
sylan |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉 ) → ( 𝐹 ‘ 𝑆 ) ∈ 𝐶 ) |
| 21 |
2 3
|
cssi |
⊢ ( ( 𝐹 ‘ 𝑆 ) ∈ 𝐶 → ( 𝐹 ‘ 𝑆 ) = ( ⊥ ‘ ( ⊥ ‘ ( 𝐹 ‘ 𝑆 ) ) ) ) |
| 22 |
20 21
|
syl |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉 ) → ( 𝐹 ‘ 𝑆 ) = ( ⊥ ‘ ( ⊥ ‘ ( 𝐹 ‘ 𝑆 ) ) ) ) |
| 23 |
18 22
|
sseqtrrd |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉 ) → ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) ⊆ ( 𝐹 ‘ 𝑆 ) ) |
| 24 |
13 23
|
eqssd |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑆 ⊆ 𝑉 ) → ( 𝐹 ‘ 𝑆 ) = ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) ) |