Metamath Proof Explorer


Theorem mrccss

Description: The Moore closure corresponding to the system of closed subspaces is the double orthocomplement operation. (Contributed by Mario Carneiro, 13-Oct-2015)

Ref Expression
Hypotheses mrccss.v V=BaseW
mrccss.o ˙=ocvW
mrccss.c C=ClSubSpW
mrccss.f F=mrClsC
Assertion mrccss WPreHilSVFS=˙˙S

Proof

Step Hyp Ref Expression
1 mrccss.v V=BaseW
2 mrccss.o ˙=ocvW
3 mrccss.c C=ClSubSpW
4 mrccss.f F=mrClsC
5 1 3 cssmre WPreHilCMooreV
6 5 adantr WPreHilSVCMooreV
7 1 2 ocvocv WPreHilSVS˙˙S
8 1 2 ocvss ˙SV
9 8 a1i SV˙SV
10 1 3 2 ocvcss WPreHil˙SV˙˙SC
11 9 10 sylan2 WPreHilSV˙˙SC
12 4 mrcsscl CMooreVS˙˙S˙˙SCFS˙˙S
13 6 7 11 12 syl3anc WPreHilSVFS˙˙S
14 4 mrcssid CMooreVSVSFS
15 5 14 sylan WPreHilSVSFS
16 2 ocv2ss SFS˙FS˙S
17 2 ocv2ss ˙FS˙S˙˙S˙˙FS
18 15 16 17 3syl WPreHilSV˙˙S˙˙FS
19 4 mrccl CMooreVSVFSC
20 5 19 sylan WPreHilSVFSC
21 2 3 cssi FSCFS=˙˙FS
22 20 21 syl WPreHilSVFS=˙˙FS
23 18 22 sseqtrrd WPreHilSV˙˙SFS
24 13 23 eqssd WPreHilSVFS=˙˙S