Description: The orthocomplement of any set is a closed subspace. (Contributed by Mario Carneiro, 13-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cssss.v | |
|
cssss.c | |
||
ocvcss.o | |
||
Assertion | ocvcss | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cssss.v | |
|
2 | cssss.c | |
|
3 | ocvcss.o | |
|
4 | 1 3 | ocvocv | |
5 | 3 | ocv2ss | |
6 | 4 5 | syl | |
7 | 1 3 | ocvss | |
8 | 7 | a1i | |
9 | 1 2 3 | iscss2 | |
10 | 8 9 | sylan2 | |
11 | 6 10 | mpbird | |