Metamath Proof Explorer


Theorem ocvcss

Description: The orthocomplement of any set is a closed subspace. (Contributed by Mario Carneiro, 13-Oct-2015)

Ref Expression
Hypotheses cssss.v 𝑉 = ( Base ‘ 𝑊 )
cssss.c 𝐶 = ( ClSubSp ‘ 𝑊 )
ocvcss.o = ( ocv ‘ 𝑊 )
Assertion ocvcss ( ( 𝑊 ∈ PreHil ∧ 𝑆𝑉 ) → ( 𝑆 ) ∈ 𝐶 )

Proof

Step Hyp Ref Expression
1 cssss.v 𝑉 = ( Base ‘ 𝑊 )
2 cssss.c 𝐶 = ( ClSubSp ‘ 𝑊 )
3 ocvcss.o = ( ocv ‘ 𝑊 )
4 1 3 ocvocv ( ( 𝑊 ∈ PreHil ∧ 𝑆𝑉 ) → 𝑆 ⊆ ( ‘ ( 𝑆 ) ) )
5 3 ocv2ss ( 𝑆 ⊆ ( ‘ ( 𝑆 ) ) → ( ‘ ( ‘ ( 𝑆 ) ) ) ⊆ ( 𝑆 ) )
6 4 5 syl ( ( 𝑊 ∈ PreHil ∧ 𝑆𝑉 ) → ( ‘ ( ‘ ( 𝑆 ) ) ) ⊆ ( 𝑆 ) )
7 1 3 ocvss ( 𝑆 ) ⊆ 𝑉
8 7 a1i ( 𝑆𝑉 → ( 𝑆 ) ⊆ 𝑉 )
9 1 2 3 iscss2 ( ( 𝑊 ∈ PreHil ∧ ( 𝑆 ) ⊆ 𝑉 ) → ( ( 𝑆 ) ∈ 𝐶 ↔ ( ‘ ( ‘ ( 𝑆 ) ) ) ⊆ ( 𝑆 ) ) )
10 8 9 sylan2 ( ( 𝑊 ∈ PreHil ∧ 𝑆𝑉 ) → ( ( 𝑆 ) ∈ 𝐶 ↔ ( ‘ ( ‘ ( 𝑆 ) ) ) ⊆ ( 𝑆 ) ) )
11 6 10 mpbird ( ( 𝑊 ∈ PreHil ∧ 𝑆𝑉 ) → ( 𝑆 ) ∈ 𝐶 )