| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cssss.v | ⊢ 𝑉  =  ( Base ‘ 𝑊 ) | 
						
							| 2 |  | cssss.c | ⊢ 𝐶  =  ( ClSubSp ‘ 𝑊 ) | 
						
							| 3 |  | ocvcss.o | ⊢  ⊥   =  ( ocv ‘ 𝑊 ) | 
						
							| 4 | 1 3 | ocvocv | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝑆  ⊆  𝑉 )  →  𝑆  ⊆  (  ⊥  ‘ (  ⊥  ‘ 𝑆 ) ) ) | 
						
							| 5 | 3 | ocv2ss | ⊢ ( 𝑆  ⊆  (  ⊥  ‘ (  ⊥  ‘ 𝑆 ) )  →  (  ⊥  ‘ (  ⊥  ‘ (  ⊥  ‘ 𝑆 ) ) )  ⊆  (  ⊥  ‘ 𝑆 ) ) | 
						
							| 6 | 4 5 | syl | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝑆  ⊆  𝑉 )  →  (  ⊥  ‘ (  ⊥  ‘ (  ⊥  ‘ 𝑆 ) ) )  ⊆  (  ⊥  ‘ 𝑆 ) ) | 
						
							| 7 | 1 3 | ocvss | ⊢ (  ⊥  ‘ 𝑆 )  ⊆  𝑉 | 
						
							| 8 | 7 | a1i | ⊢ ( 𝑆  ⊆  𝑉  →  (  ⊥  ‘ 𝑆 )  ⊆  𝑉 ) | 
						
							| 9 | 1 2 3 | iscss2 | ⊢ ( ( 𝑊  ∈  PreHil  ∧  (  ⊥  ‘ 𝑆 )  ⊆  𝑉 )  →  ( (  ⊥  ‘ 𝑆 )  ∈  𝐶  ↔  (  ⊥  ‘ (  ⊥  ‘ (  ⊥  ‘ 𝑆 ) ) )  ⊆  (  ⊥  ‘ 𝑆 ) ) ) | 
						
							| 10 | 8 9 | sylan2 | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝑆  ⊆  𝑉 )  →  ( (  ⊥  ‘ 𝑆 )  ∈  𝐶  ↔  (  ⊥  ‘ (  ⊥  ‘ (  ⊥  ‘ 𝑆 ) ) )  ⊆  (  ⊥  ‘ 𝑆 ) ) ) | 
						
							| 11 | 6 10 | mpbird | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝑆  ⊆  𝑉 )  →  (  ⊥  ‘ 𝑆 )  ∈  𝐶 ) |