| Step | Hyp | Ref | Expression | 
						
							| 1 |  | css0.c | ⊢ 𝐶  =  ( ClSubSp ‘ 𝑊 ) | 
						
							| 2 |  | eqid | ⊢ ( Base ‘ 𝑊 )  =  ( Base ‘ 𝑊 ) | 
						
							| 3 |  | eqid | ⊢ ( ocv ‘ 𝑊 )  =  ( ocv ‘ 𝑊 ) | 
						
							| 4 | 2 3 | ocvss | ⊢ ( ( ocv ‘ 𝑊 ) ‘ 𝐴 )  ⊆  ( Base ‘ 𝑊 ) | 
						
							| 5 | 2 3 | ocvss | ⊢ ( ( ocv ‘ 𝑊 ) ‘ 𝐵 )  ⊆  ( Base ‘ 𝑊 ) | 
						
							| 6 | 4 5 | unssi | ⊢ ( ( ( ocv ‘ 𝑊 ) ‘ 𝐴 )  ∪  ( ( ocv ‘ 𝑊 ) ‘ 𝐵 ) )  ⊆  ( Base ‘ 𝑊 ) | 
						
							| 7 | 2 1 3 | ocvcss | ⊢ ( ( 𝑊  ∈  PreHil  ∧  ( ( ( ocv ‘ 𝑊 ) ‘ 𝐴 )  ∪  ( ( ocv ‘ 𝑊 ) ‘ 𝐵 ) )  ⊆  ( Base ‘ 𝑊 ) )  →  ( ( ocv ‘ 𝑊 ) ‘ ( ( ( ocv ‘ 𝑊 ) ‘ 𝐴 )  ∪  ( ( ocv ‘ 𝑊 ) ‘ 𝐵 ) ) )  ∈  𝐶 ) | 
						
							| 8 | 6 7 | mpan2 | ⊢ ( 𝑊  ∈  PreHil  →  ( ( ocv ‘ 𝑊 ) ‘ ( ( ( ocv ‘ 𝑊 ) ‘ 𝐴 )  ∪  ( ( ocv ‘ 𝑊 ) ‘ 𝐵 ) ) )  ∈  𝐶 ) | 
						
							| 9 | 3 1 | cssi | ⊢ ( 𝐴  ∈  𝐶  →  𝐴  =  ( ( ocv ‘ 𝑊 ) ‘ ( ( ocv ‘ 𝑊 ) ‘ 𝐴 ) ) ) | 
						
							| 10 | 3 1 | cssi | ⊢ ( 𝐵  ∈  𝐶  →  𝐵  =  ( ( ocv ‘ 𝑊 ) ‘ ( ( ocv ‘ 𝑊 ) ‘ 𝐵 ) ) ) | 
						
							| 11 | 9 10 | ineqan12d | ⊢ ( ( 𝐴  ∈  𝐶  ∧  𝐵  ∈  𝐶 )  →  ( 𝐴  ∩  𝐵 )  =  ( ( ( ocv ‘ 𝑊 ) ‘ ( ( ocv ‘ 𝑊 ) ‘ 𝐴 ) )  ∩  ( ( ocv ‘ 𝑊 ) ‘ ( ( ocv ‘ 𝑊 ) ‘ 𝐵 ) ) ) ) | 
						
							| 12 | 3 | unocv | ⊢ ( ( ocv ‘ 𝑊 ) ‘ ( ( ( ocv ‘ 𝑊 ) ‘ 𝐴 )  ∪  ( ( ocv ‘ 𝑊 ) ‘ 𝐵 ) ) )  =  ( ( ( ocv ‘ 𝑊 ) ‘ ( ( ocv ‘ 𝑊 ) ‘ 𝐴 ) )  ∩  ( ( ocv ‘ 𝑊 ) ‘ ( ( ocv ‘ 𝑊 ) ‘ 𝐵 ) ) ) | 
						
							| 13 | 11 12 | eqtr4di | ⊢ ( ( 𝐴  ∈  𝐶  ∧  𝐵  ∈  𝐶 )  →  ( 𝐴  ∩  𝐵 )  =  ( ( ocv ‘ 𝑊 ) ‘ ( ( ( ocv ‘ 𝑊 ) ‘ 𝐴 )  ∪  ( ( ocv ‘ 𝑊 ) ‘ 𝐵 ) ) ) ) | 
						
							| 14 | 13 | eleq1d | ⊢ ( ( 𝐴  ∈  𝐶  ∧  𝐵  ∈  𝐶 )  →  ( ( 𝐴  ∩  𝐵 )  ∈  𝐶  ↔  ( ( ocv ‘ 𝑊 ) ‘ ( ( ( ocv ‘ 𝑊 ) ‘ 𝐴 )  ∪  ( ( ocv ‘ 𝑊 ) ‘ 𝐵 ) ) )  ∈  𝐶 ) ) | 
						
							| 15 | 8 14 | syl5ibrcom | ⊢ ( 𝑊  ∈  PreHil  →  ( ( 𝐴  ∈  𝐶  ∧  𝐵  ∈  𝐶 )  →  ( 𝐴  ∩  𝐵 )  ∈  𝐶 ) ) | 
						
							| 16 | 15 | 3impib | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝐴  ∈  𝐶  ∧  𝐵  ∈  𝐶 )  →  ( 𝐴  ∩  𝐵 )  ∈  𝐶 ) |