| Step | Hyp | Ref | Expression | 
						
							| 1 |  | css0.c |  |-  C = ( ClSubSp ` W ) | 
						
							| 2 |  | eqid |  |-  ( Base ` W ) = ( Base ` W ) | 
						
							| 3 |  | eqid |  |-  ( ocv ` W ) = ( ocv ` W ) | 
						
							| 4 | 2 3 | ocvss |  |-  ( ( ocv ` W ) ` A ) C_ ( Base ` W ) | 
						
							| 5 | 2 3 | ocvss |  |-  ( ( ocv ` W ) ` B ) C_ ( Base ` W ) | 
						
							| 6 | 4 5 | unssi |  |-  ( ( ( ocv ` W ) ` A ) u. ( ( ocv ` W ) ` B ) ) C_ ( Base ` W ) | 
						
							| 7 | 2 1 3 | ocvcss |  |-  ( ( W e. PreHil /\ ( ( ( ocv ` W ) ` A ) u. ( ( ocv ` W ) ` B ) ) C_ ( Base ` W ) ) -> ( ( ocv ` W ) ` ( ( ( ocv ` W ) ` A ) u. ( ( ocv ` W ) ` B ) ) ) e. C ) | 
						
							| 8 | 6 7 | mpan2 |  |-  ( W e. PreHil -> ( ( ocv ` W ) ` ( ( ( ocv ` W ) ` A ) u. ( ( ocv ` W ) ` B ) ) ) e. C ) | 
						
							| 9 | 3 1 | cssi |  |-  ( A e. C -> A = ( ( ocv ` W ) ` ( ( ocv ` W ) ` A ) ) ) | 
						
							| 10 | 3 1 | cssi |  |-  ( B e. C -> B = ( ( ocv ` W ) ` ( ( ocv ` W ) ` B ) ) ) | 
						
							| 11 | 9 10 | ineqan12d |  |-  ( ( A e. C /\ B e. C ) -> ( A i^i B ) = ( ( ( ocv ` W ) ` ( ( ocv ` W ) ` A ) ) i^i ( ( ocv ` W ) ` ( ( ocv ` W ) ` B ) ) ) ) | 
						
							| 12 | 3 | unocv |  |-  ( ( ocv ` W ) ` ( ( ( ocv ` W ) ` A ) u. ( ( ocv ` W ) ` B ) ) ) = ( ( ( ocv ` W ) ` ( ( ocv ` W ) ` A ) ) i^i ( ( ocv ` W ) ` ( ( ocv ` W ) ` B ) ) ) | 
						
							| 13 | 11 12 | eqtr4di |  |-  ( ( A e. C /\ B e. C ) -> ( A i^i B ) = ( ( ocv ` W ) ` ( ( ( ocv ` W ) ` A ) u. ( ( ocv ` W ) ` B ) ) ) ) | 
						
							| 14 | 13 | eleq1d |  |-  ( ( A e. C /\ B e. C ) -> ( ( A i^i B ) e. C <-> ( ( ocv ` W ) ` ( ( ( ocv ` W ) ` A ) u. ( ( ocv ` W ) ` B ) ) ) e. C ) ) | 
						
							| 15 | 8 14 | syl5ibrcom |  |-  ( W e. PreHil -> ( ( A e. C /\ B e. C ) -> ( A i^i B ) e. C ) ) | 
						
							| 16 | 15 | 3impib |  |-  ( ( W e. PreHil /\ A e. C /\ B e. C ) -> ( A i^i B ) e. C ) |