Description: Property of a closed subspace (of a pre-Hilbert space). (Contributed by Mario Carneiro, 13-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cssval.o | |- ._|_ = ( ocv ` W ) |
|
| cssval.c | |- C = ( ClSubSp ` W ) |
||
| Assertion | cssi | |- ( S e. C -> S = ( ._|_ ` ( ._|_ ` S ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cssval.o | |- ._|_ = ( ocv ` W ) |
|
| 2 | cssval.c | |- C = ( ClSubSp ` W ) |
|
| 3 | elfvdm | |- ( S e. ( ClSubSp ` W ) -> W e. dom ClSubSp ) |
|
| 4 | 3 2 | eleq2s | |- ( S e. C -> W e. dom ClSubSp ) |
| 5 | 1 2 | iscss | |- ( W e. dom ClSubSp -> ( S e. C <-> S = ( ._|_ ` ( ._|_ ` S ) ) ) ) |
| 6 | 4 5 | syl | |- ( S e. C -> ( S e. C <-> S = ( ._|_ ` ( ._|_ ` S ) ) ) ) |
| 7 | 6 | ibi | |- ( S e. C -> S = ( ._|_ ` ( ._|_ ` S ) ) ) |