Description: A closed subspace is a subset of the base. (Contributed by Mario Carneiro, 13-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cssss.v | |- V = ( Base ` W ) | |
| cssss.c | |- C = ( ClSubSp ` W ) | ||
| Assertion | cssss | |- ( S e. C -> S C_ V ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | cssss.v | |- V = ( Base ` W ) | |
| 2 | cssss.c | |- C = ( ClSubSp ` W ) | |
| 3 | eqid | |- ( ocv ` W ) = ( ocv ` W ) | |
| 4 | 3 2 | cssi | |- ( S e. C -> S = ( ( ocv ` W ) ` ( ( ocv ` W ) ` S ) ) ) | 
| 5 | 1 3 | ocvss | |- ( ( ocv ` W ) ` ( ( ocv ` W ) ` S ) ) C_ V | 
| 6 | 4 5 | eqsstrdi | |- ( S e. C -> S C_ V ) |