Description: A closed subspace is a subset of the base. (Contributed by Mario Carneiro, 13-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cssss.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| cssss.c | ⊢ 𝐶 = ( ClSubSp ‘ 𝑊 ) | ||
| Assertion | cssss | ⊢ ( 𝑆 ∈ 𝐶 → 𝑆 ⊆ 𝑉 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | cssss.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 2 | cssss.c | ⊢ 𝐶 = ( ClSubSp ‘ 𝑊 ) | |
| 3 | eqid | ⊢ ( ocv ‘ 𝑊 ) = ( ocv ‘ 𝑊 ) | |
| 4 | 3 2 | cssi | ⊢ ( 𝑆 ∈ 𝐶 → 𝑆 = ( ( ocv ‘ 𝑊 ) ‘ ( ( ocv ‘ 𝑊 ) ‘ 𝑆 ) ) ) | 
| 5 | 1 3 | ocvss | ⊢ ( ( ocv ‘ 𝑊 ) ‘ ( ( ocv ‘ 𝑊 ) ‘ 𝑆 ) ) ⊆ 𝑉 | 
| 6 | 4 5 | eqsstrdi | ⊢ ( 𝑆 ∈ 𝐶 → 𝑆 ⊆ 𝑉 ) |