Database
BASIC ALGEBRAIC STRUCTURES
Generalized pre-Hilbert and Hilbert spaces
Orthocomplements and closed subspaces
cssss
Next ⟩
iscss2
Metamath Proof Explorer
Ascii
Unicode
Theorem
cssss
Description:
A closed subspace is a subset of the base.
(Contributed by
Mario Carneiro
, 13-Oct-2015)
Ref
Expression
Hypotheses
cssss.v
⊢
V
=
Base
W
cssss.c
⊢
C
=
ClSubSp
⁡
W
Assertion
cssss
⊢
S
∈
C
→
S
⊆
V
Proof
Step
Hyp
Ref
Expression
1
cssss.v
⊢
V
=
Base
W
2
cssss.c
⊢
C
=
ClSubSp
⁡
W
3
eqid
⊢
ocv
⁡
W
=
ocv
⁡
W
4
3
2
cssi
⊢
S
∈
C
→
S
=
ocv
⁡
W
⁡
ocv
⁡
W
⁡
S
5
1
3
ocvss
⊢
ocv
⁡
W
⁡
ocv
⁡
W
⁡
S
⊆
V
6
4
5
eqsstrdi
⊢
S
∈
C
→
S
⊆
V