Metamath Proof Explorer


Theorem cssi

Description: Property of a closed subspace (of a pre-Hilbert space). (Contributed by Mario Carneiro, 13-Oct-2015)

Ref Expression
Hypotheses cssval.o ˙=ocvW
cssval.c C=ClSubSpW
Assertion cssi SCS=˙˙S

Proof

Step Hyp Ref Expression
1 cssval.o ˙=ocvW
2 cssval.c C=ClSubSpW
3 elfvdm SClSubSpWWdomClSubSp
4 3 2 eleq2s SCWdomClSubSp
5 1 2 iscss WdomClSubSpSCS=˙˙S
6 4 5 syl SCSCS=˙˙S
7 6 ibi SCS=˙˙S