Description: Property of a closed subspace (of a pre-Hilbert space). (Contributed by Mario Carneiro, 13-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cssval.o | ⊢ ⊥ = ( ocv ‘ 𝑊 ) | |
| cssval.c | ⊢ 𝐶 = ( ClSubSp ‘ 𝑊 ) | ||
| Assertion | cssi | ⊢ ( 𝑆 ∈ 𝐶 → 𝑆 = ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cssval.o | ⊢ ⊥ = ( ocv ‘ 𝑊 ) | |
| 2 | cssval.c | ⊢ 𝐶 = ( ClSubSp ‘ 𝑊 ) | |
| 3 | elfvdm | ⊢ ( 𝑆 ∈ ( ClSubSp ‘ 𝑊 ) → 𝑊 ∈ dom ClSubSp ) | |
| 4 | 3 2 | eleq2s | ⊢ ( 𝑆 ∈ 𝐶 → 𝑊 ∈ dom ClSubSp ) |
| 5 | 1 2 | iscss | ⊢ ( 𝑊 ∈ dom ClSubSp → ( 𝑆 ∈ 𝐶 ↔ 𝑆 = ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) ) ) |
| 6 | 4 5 | syl | ⊢ ( 𝑆 ∈ 𝐶 → ( 𝑆 ∈ 𝐶 ↔ 𝑆 = ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) ) ) |
| 7 | 6 | ibi | ⊢ ( 𝑆 ∈ 𝐶 → 𝑆 = ( ⊥ ‘ ( ⊥ ‘ 𝑆 ) ) ) |