Metamath Proof Explorer


Theorem iscss

Description: The predicate "is a closed subspace" (of a pre-Hilbert space). (Contributed by NM, 7-Oct-2011) (Revised by Mario Carneiro, 13-Oct-2015)

Ref Expression
Hypotheses cssval.o ˙=ocvW
cssval.c C=ClSubSpW
Assertion iscss WXSCS=˙˙S

Proof

Step Hyp Ref Expression
1 cssval.o ˙=ocvW
2 cssval.c C=ClSubSpW
3 1 2 cssval WXC=s|s=˙˙s
4 3 eleq2d WXSCSs|s=˙˙s
5 id S=˙˙SS=˙˙S
6 fvex ˙˙SV
7 5 6 eqeltrdi S=˙˙SSV
8 id s=Ss=S
9 2fveq3 s=S˙˙s=˙˙S
10 8 9 eqeq12d s=Ss=˙˙sS=˙˙S
11 7 10 elab3 Ss|s=˙˙sS=˙˙S
12 4 11 bitrdi WXSCS=˙˙S