| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cssss.v | ⊢ 𝑉  =  ( Base ‘ 𝑊 ) | 
						
							| 2 |  | cssss.c | ⊢ 𝐶  =  ( ClSubSp ‘ 𝑊 ) | 
						
							| 3 |  | ocvcss.o | ⊢  ⊥   =  ( ocv ‘ 𝑊 ) | 
						
							| 4 | 3 2 | iscss | ⊢ ( 𝑊  ∈  PreHil  →  ( 𝑆  ∈  𝐶  ↔  𝑆  =  (  ⊥  ‘ (  ⊥  ‘ 𝑆 ) ) ) ) | 
						
							| 5 | 4 | adantr | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝑆  ⊆  𝑉 )  →  ( 𝑆  ∈  𝐶  ↔  𝑆  =  (  ⊥  ‘ (  ⊥  ‘ 𝑆 ) ) ) ) | 
						
							| 6 | 1 3 | ocvocv | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝑆  ⊆  𝑉 )  →  𝑆  ⊆  (  ⊥  ‘ (  ⊥  ‘ 𝑆 ) ) ) | 
						
							| 7 |  | eqss | ⊢ ( 𝑆  =  (  ⊥  ‘ (  ⊥  ‘ 𝑆 ) )  ↔  ( 𝑆  ⊆  (  ⊥  ‘ (  ⊥  ‘ 𝑆 ) )  ∧  (  ⊥  ‘ (  ⊥  ‘ 𝑆 ) )  ⊆  𝑆 ) ) | 
						
							| 8 | 7 | baib | ⊢ ( 𝑆  ⊆  (  ⊥  ‘ (  ⊥  ‘ 𝑆 ) )  →  ( 𝑆  =  (  ⊥  ‘ (  ⊥  ‘ 𝑆 ) )  ↔  (  ⊥  ‘ (  ⊥  ‘ 𝑆 ) )  ⊆  𝑆 ) ) | 
						
							| 9 | 6 8 | syl | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝑆  ⊆  𝑉 )  →  ( 𝑆  =  (  ⊥  ‘ (  ⊥  ‘ 𝑆 ) )  ↔  (  ⊥  ‘ (  ⊥  ‘ 𝑆 ) )  ⊆  𝑆 ) ) | 
						
							| 10 | 5 9 | bitrd | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝑆  ⊆  𝑉 )  →  ( 𝑆  ∈  𝐶  ↔  (  ⊥  ‘ (  ⊥  ‘ 𝑆 ) )  ⊆  𝑆 ) ) |