| Step | Hyp | Ref | Expression | 
						
							| 1 |  | css0.c |  |-  C = ( ClSubSp ` W ) | 
						
							| 2 |  | css0.z |  |-  .0. = ( 0g ` W ) | 
						
							| 3 |  | eqid |  |-  ( Base ` W ) = ( Base ` W ) | 
						
							| 4 |  | eqid |  |-  ( ocv ` W ) = ( ocv ` W ) | 
						
							| 5 | 3 4 2 | ocv1 |  |-  ( W e. PreHil -> ( ( ocv ` W ) ` ( Base ` W ) ) = { .0. } ) | 
						
							| 6 |  | ssid |  |-  ( Base ` W ) C_ ( Base ` W ) | 
						
							| 7 | 3 1 4 | ocvcss |  |-  ( ( W e. PreHil /\ ( Base ` W ) C_ ( Base ` W ) ) -> ( ( ocv ` W ) ` ( Base ` W ) ) e. C ) | 
						
							| 8 | 6 7 | mpan2 |  |-  ( W e. PreHil -> ( ( ocv ` W ) ` ( Base ` W ) ) e. C ) | 
						
							| 9 | 5 8 | eqeltrrd |  |-  ( W e. PreHil -> { .0. } e. C ) |