Description: The zero subspace is a closed subspace. (Contributed by Mario Carneiro, 13-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | css0.c | ⊢ 𝐶 = ( ClSubSp ‘ 𝑊 ) | |
| css0.z | ⊢ 0 = ( 0g ‘ 𝑊 ) | ||
| Assertion | css0 | ⊢ ( 𝑊 ∈ PreHil → { 0 } ∈ 𝐶 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | css0.c | ⊢ 𝐶 = ( ClSubSp ‘ 𝑊 ) | |
| 2 | css0.z | ⊢ 0 = ( 0g ‘ 𝑊 ) | |
| 3 | eqid | ⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) | |
| 4 | eqid | ⊢ ( ocv ‘ 𝑊 ) = ( ocv ‘ 𝑊 ) | |
| 5 | 3 4 2 | ocv1 | ⊢ ( 𝑊 ∈ PreHil → ( ( ocv ‘ 𝑊 ) ‘ ( Base ‘ 𝑊 ) ) = { 0 } ) | 
| 6 | ssid | ⊢ ( Base ‘ 𝑊 ) ⊆ ( Base ‘ 𝑊 ) | |
| 7 | 3 1 4 | ocvcss | ⊢ ( ( 𝑊 ∈ PreHil ∧ ( Base ‘ 𝑊 ) ⊆ ( Base ‘ 𝑊 ) ) → ( ( ocv ‘ 𝑊 ) ‘ ( Base ‘ 𝑊 ) ) ∈ 𝐶 ) | 
| 8 | 6 7 | mpan2 | ⊢ ( 𝑊 ∈ PreHil → ( ( ocv ‘ 𝑊 ) ‘ ( Base ‘ 𝑊 ) ) ∈ 𝐶 ) | 
| 9 | 5 8 | eqeltrrd | ⊢ ( 𝑊 ∈ PreHil → { 0 } ∈ 𝐶 ) |