Description: The whole space is a closed subspace. (Contributed by Mario Carneiro, 13-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | css1.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| css1.c | ⊢ 𝐶 = ( ClSubSp ‘ 𝑊 ) | ||
| Assertion | css1 | ⊢ ( 𝑊 ∈ PreHil → 𝑉 ∈ 𝐶 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | css1.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 2 | css1.c | ⊢ 𝐶 = ( ClSubSp ‘ 𝑊 ) | |
| 3 | eqid | ⊢ ( ocv ‘ 𝑊 ) = ( ocv ‘ 𝑊 ) | |
| 4 | 1 3 | ocv0 | ⊢ ( ( ocv ‘ 𝑊 ) ‘ ∅ ) = 𝑉 | 
| 5 | 0ss | ⊢ ∅ ⊆ 𝑉 | |
| 6 | 1 2 3 | ocvcss | ⊢ ( ( 𝑊 ∈ PreHil ∧ ∅ ⊆ 𝑉 ) → ( ( ocv ‘ 𝑊 ) ‘ ∅ ) ∈ 𝐶 ) | 
| 7 | 5 6 | mpan2 | ⊢ ( 𝑊 ∈ PreHil → ( ( ocv ‘ 𝑊 ) ‘ ∅ ) ∈ 𝐶 ) | 
| 8 | 4 7 | eqeltrrid | ⊢ ( 𝑊 ∈ PreHil → 𝑉 ∈ 𝐶 ) |