Description: The whole space is a closed subspace. (Contributed by Mario Carneiro, 13-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | css1.v | |- V = ( Base ` W ) | |
| css1.c | |- C = ( ClSubSp ` W ) | ||
| Assertion | css1 | |- ( W e. PreHil -> V e. C ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | css1.v | |- V = ( Base ` W ) | |
| 2 | css1.c | |- C = ( ClSubSp ` W ) | |
| 3 | eqid | |- ( ocv ` W ) = ( ocv ` W ) | |
| 4 | 1 3 | ocv0 | |- ( ( ocv ` W ) ` (/) ) = V | 
| 5 | 0ss | |- (/) C_ V | |
| 6 | 1 2 3 | ocvcss | |- ( ( W e. PreHil /\ (/) C_ V ) -> ( ( ocv ` W ) ` (/) ) e. C ) | 
| 7 | 5 6 | mpan2 | |- ( W e. PreHil -> ( ( ocv ` W ) ` (/) ) e. C ) | 
| 8 | 4 7 | eqeltrrid | |- ( W e. PreHil -> V e. C ) |