| Step | Hyp | Ref | Expression | 
						
							| 1 |  | csslss.c |  |-  C = ( ClSubSp ` W ) | 
						
							| 2 |  | csslss.l |  |-  L = ( LSubSp ` W ) | 
						
							| 3 |  | eqid |  |-  ( ocv ` W ) = ( ocv ` W ) | 
						
							| 4 | 3 1 | cssi |  |-  ( S e. C -> S = ( ( ocv ` W ) ` ( ( ocv ` W ) ` S ) ) ) | 
						
							| 5 | 4 | adantl |  |-  ( ( W e. PreHil /\ S e. C ) -> S = ( ( ocv ` W ) ` ( ( ocv ` W ) ` S ) ) ) | 
						
							| 6 |  | eqid |  |-  ( Base ` W ) = ( Base ` W ) | 
						
							| 7 | 6 3 | ocvss |  |-  ( ( ocv ` W ) ` S ) C_ ( Base ` W ) | 
						
							| 8 | 7 | a1i |  |-  ( S e. C -> ( ( ocv ` W ) ` S ) C_ ( Base ` W ) ) | 
						
							| 9 | 6 3 2 | ocvlss |  |-  ( ( W e. PreHil /\ ( ( ocv ` W ) ` S ) C_ ( Base ` W ) ) -> ( ( ocv ` W ) ` ( ( ocv ` W ) ` S ) ) e. L ) | 
						
							| 10 | 8 9 | sylan2 |  |-  ( ( W e. PreHil /\ S e. C ) -> ( ( ocv ` W ) ` ( ( ocv ` W ) ` S ) ) e. L ) | 
						
							| 11 | 5 10 | eqeltrd |  |-  ( ( W e. PreHil /\ S e. C ) -> S e. L ) |