Metamath Proof Explorer


Theorem css1

Description: The whole space is a closed subspace. (Contributed by Mario Carneiro, 13-Oct-2015)

Ref Expression
Hypotheses css1.v V=BaseW
css1.c C=ClSubSpW
Assertion css1 WPreHilVC

Proof

Step Hyp Ref Expression
1 css1.v V=BaseW
2 css1.c C=ClSubSpW
3 eqid ocvW=ocvW
4 1 3 ocv0 ocvW=V
5 0ss V
6 1 2 3 ocvcss WPreHilVocvWC
7 5 6 mpan2 WPreHilocvWC
8 4 7 eqeltrrid WPreHilVC