Metamath Proof Explorer


Theorem cssmre

Description: The closed subspaces of a pre-Hilbert space are a Moore system. Unlike many of our other examples of closure systems, this one isnot usually an algebraic closure system df-acs : consider the Hilbert space of sequences NN --> RR with convergent sum; the subspace of all sequences with finite support is the classic example of a non-closed subspace, but for every finite set of sequences of finite support, there is a finite-dimensional (and hence closed) subspace containing all of the sequences, so if closed subspaces were an algebraic closure system this would violate acsfiel . (Contributed by Mario Carneiro, 13-Oct-2015)

Ref Expression
Hypotheses cssmre.v V = Base W
cssmre.c C = ClSubSp W
Assertion cssmre W PreHil C Moore V

Proof

Step Hyp Ref Expression
1 cssmre.v V = Base W
2 cssmre.c C = ClSubSp W
3 1 2 cssss x C x V
4 velpw x 𝒫 V x V
5 3 4 sylibr x C x 𝒫 V
6 5 a1i W PreHil x C x 𝒫 V
7 6 ssrdv W PreHil C 𝒫 V
8 1 2 css1 W PreHil V C
9 intss1 z x x z
10 eqid ocv W = ocv W
11 10 ocv2ss x z ocv W z ocv W x
12 10 ocv2ss ocv W z ocv W x ocv W ocv W x ocv W ocv W z
13 9 11 12 3syl z x ocv W ocv W x ocv W ocv W z
14 13 ad2antll W PreHil x C x y ocv W ocv W x z x ocv W ocv W x ocv W ocv W z
15 simprl W PreHil x C x y ocv W ocv W x z x y ocv W ocv W x
16 14 15 sseldd W PreHil x C x y ocv W ocv W x z x y ocv W ocv W z
17 simpl2 W PreHil x C x y ocv W ocv W x z x x C
18 simprr W PreHil x C x y ocv W ocv W x z x z x
19 17 18 sseldd W PreHil x C x y ocv W ocv W x z x z C
20 10 2 cssi z C z = ocv W ocv W z
21 19 20 syl W PreHil x C x y ocv W ocv W x z x z = ocv W ocv W z
22 16 21 eleqtrrd W PreHil x C x y ocv W ocv W x z x y z
23 22 expr W PreHil x C x y ocv W ocv W x z x y z
24 23 alrimiv W PreHil x C x y ocv W ocv W x z z x y z
25 vex y V
26 25 elint y x z z x y z
27 24 26 sylibr W PreHil x C x y ocv W ocv W x y x
28 27 ex W PreHil x C x y ocv W ocv W x y x
29 28 ssrdv W PreHil x C x ocv W ocv W x x
30 simp1 W PreHil x C x W PreHil
31 intssuni x x x
32 31 3ad2ant3 W PreHil x C x x x
33 simp2 W PreHil x C x x C
34 7 3ad2ant1 W PreHil x C x C 𝒫 V
35 33 34 sstrd W PreHil x C x x 𝒫 V
36 sspwuni x 𝒫 V x V
37 35 36 sylib W PreHil x C x x V
38 32 37 sstrd W PreHil x C x x V
39 1 2 10 iscss2 W PreHil x V x C ocv W ocv W x x
40 30 38 39 syl2anc W PreHil x C x x C ocv W ocv W x x
41 29 40 mpbird W PreHil x C x x C
42 7 8 41 ismred W PreHil C Moore V