Metamath Proof Explorer


Theorem acsfiel

Description: A set is closed in an algebraic closure system iff it contains all closures of finite subsets. (Contributed by Stefan O'Rear, 2-Apr-2015)

Ref Expression
Hypothesis isacs2.f F=mrClsC
Assertion acsfiel CACSXSCSXy𝒫SFinFyS

Proof

Step Hyp Ref Expression
1 isacs2.f F=mrClsC
2 acsmre CACSXCMooreX
3 mress CMooreXSCSX
4 2 3 sylan CACSXSCSX
5 4 ex CACSXSCSX
6 5 pm4.71rd CACSXSCSXSC
7 eleq1 s=SsCSC
8 pweq s=S𝒫s=𝒫S
9 8 ineq1d s=S𝒫sFin=𝒫SFin
10 sseq2 s=SFysFyS
11 9 10 raleqbidv s=Sy𝒫sFinFysy𝒫SFinFyS
12 7 11 bibi12d s=SsCy𝒫sFinFysSCy𝒫SFinFyS
13 1 isacs2 CACSXCMooreXs𝒫XsCy𝒫sFinFys
14 13 simprbi CACSXs𝒫XsCy𝒫sFinFys
15 14 adantr CACSXSXs𝒫XsCy𝒫sFinFys
16 elfvdm CACSXXdomACS
17 elpw2g XdomACSS𝒫XSX
18 16 17 syl CACSXS𝒫XSX
19 18 biimpar CACSXSXS𝒫X
20 12 15 19 rspcdva CACSXSXSCy𝒫SFinFyS
21 20 pm5.32da CACSXSXSCSXy𝒫SFinFyS
22 6 21 bitrd CACSXSCSXy𝒫SFinFyS