Metamath Proof Explorer


Theorem acsfiel2

Description: A set is closed in an algebraic closure system iff it contains all closures of finite subsets. (Contributed by Stefan O'Rear, 3-Apr-2015)

Ref Expression
Hypothesis isacs2.f F=mrClsC
Assertion acsfiel2 CACSXSXSCy𝒫SFinFyS

Proof

Step Hyp Ref Expression
1 isacs2.f F=mrClsC
2 1 acsfiel CACSXSCSXy𝒫SFinFyS
3 2 baibd CACSXSXSCy𝒫SFinFyS