Description: Properties that determine a Moore collection. (Contributed by Stefan O'Rear, 30-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ismred.ss | ⊢ ( 𝜑 → 𝐶 ⊆ 𝒫 𝑋 ) | |
| ismred.ba | ⊢ ( 𝜑 → 𝑋 ∈ 𝐶 ) | ||
| ismred.in | ⊢ ( ( 𝜑 ∧ 𝑠 ⊆ 𝐶 ∧ 𝑠 ≠ ∅ ) → ∩ 𝑠 ∈ 𝐶 ) | ||
| Assertion | ismred | ⊢ ( 𝜑 → 𝐶 ∈ ( Moore ‘ 𝑋 ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ismred.ss | ⊢ ( 𝜑 → 𝐶 ⊆ 𝒫 𝑋 ) | |
| 2 | ismred.ba | ⊢ ( 𝜑 → 𝑋 ∈ 𝐶 ) | |
| 3 | ismred.in | ⊢ ( ( 𝜑 ∧ 𝑠 ⊆ 𝐶 ∧ 𝑠 ≠ ∅ ) → ∩ 𝑠 ∈ 𝐶 ) | |
| 4 | velpw | ⊢ ( 𝑠 ∈ 𝒫 𝐶 ↔ 𝑠 ⊆ 𝐶 ) | |
| 5 | 3 | 3expia | ⊢ ( ( 𝜑 ∧ 𝑠 ⊆ 𝐶 ) → ( 𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝐶 ) ) | 
| 6 | 4 5 | sylan2b | ⊢ ( ( 𝜑 ∧ 𝑠 ∈ 𝒫 𝐶 ) → ( 𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝐶 ) ) | 
| 7 | 6 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑠 ∈ 𝒫 𝐶 ( 𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝐶 ) ) | 
| 8 | ismre | ⊢ ( 𝐶 ∈ ( Moore ‘ 𝑋 ) ↔ ( 𝐶 ⊆ 𝒫 𝑋 ∧ 𝑋 ∈ 𝐶 ∧ ∀ 𝑠 ∈ 𝒫 𝐶 ( 𝑠 ≠ ∅ → ∩ 𝑠 ∈ 𝐶 ) ) ) | |
| 9 | 1 2 7 8 | syl3anbrc | ⊢ ( 𝜑 → 𝐶 ∈ ( Moore ‘ 𝑋 ) ) |