| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ismred2.ss | ⊢ ( 𝜑  →  𝐶  ⊆  𝒫  𝑋 ) | 
						
							| 2 |  | ismred2.in | ⊢ ( ( 𝜑  ∧  𝑠  ⊆  𝐶 )  →  ( 𝑋  ∩  ∩  𝑠 )  ∈  𝐶 ) | 
						
							| 3 |  | eqid | ⊢ ∅  =  ∅ | 
						
							| 4 |  | rint0 | ⊢ ( ∅  =  ∅  →  ( 𝑋  ∩  ∩  ∅ )  =  𝑋 ) | 
						
							| 5 | 3 4 | ax-mp | ⊢ ( 𝑋  ∩  ∩  ∅ )  =  𝑋 | 
						
							| 6 |  | 0ss | ⊢ ∅  ⊆  𝐶 | 
						
							| 7 |  | 0ex | ⊢ ∅  ∈  V | 
						
							| 8 |  | sseq1 | ⊢ ( 𝑠  =  ∅  →  ( 𝑠  ⊆  𝐶  ↔  ∅  ⊆  𝐶 ) ) | 
						
							| 9 | 8 | anbi2d | ⊢ ( 𝑠  =  ∅  →  ( ( 𝜑  ∧  𝑠  ⊆  𝐶 )  ↔  ( 𝜑  ∧  ∅  ⊆  𝐶 ) ) ) | 
						
							| 10 |  | inteq | ⊢ ( 𝑠  =  ∅  →  ∩  𝑠  =  ∩  ∅ ) | 
						
							| 11 | 10 | ineq2d | ⊢ ( 𝑠  =  ∅  →  ( 𝑋  ∩  ∩  𝑠 )  =  ( 𝑋  ∩  ∩  ∅ ) ) | 
						
							| 12 | 11 | eleq1d | ⊢ ( 𝑠  =  ∅  →  ( ( 𝑋  ∩  ∩  𝑠 )  ∈  𝐶  ↔  ( 𝑋  ∩  ∩  ∅ )  ∈  𝐶 ) ) | 
						
							| 13 | 9 12 | imbi12d | ⊢ ( 𝑠  =  ∅  →  ( ( ( 𝜑  ∧  𝑠  ⊆  𝐶 )  →  ( 𝑋  ∩  ∩  𝑠 )  ∈  𝐶 )  ↔  ( ( 𝜑  ∧  ∅  ⊆  𝐶 )  →  ( 𝑋  ∩  ∩  ∅ )  ∈  𝐶 ) ) ) | 
						
							| 14 | 7 13 2 | vtocl | ⊢ ( ( 𝜑  ∧  ∅  ⊆  𝐶 )  →  ( 𝑋  ∩  ∩  ∅ )  ∈  𝐶 ) | 
						
							| 15 | 6 14 | mpan2 | ⊢ ( 𝜑  →  ( 𝑋  ∩  ∩  ∅ )  ∈  𝐶 ) | 
						
							| 16 | 5 15 | eqeltrrid | ⊢ ( 𝜑  →  𝑋  ∈  𝐶 ) | 
						
							| 17 |  | simp2 | ⊢ ( ( 𝜑  ∧  𝑠  ⊆  𝐶  ∧  𝑠  ≠  ∅ )  →  𝑠  ⊆  𝐶 ) | 
						
							| 18 | 1 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑠  ⊆  𝐶  ∧  𝑠  ≠  ∅ )  →  𝐶  ⊆  𝒫  𝑋 ) | 
						
							| 19 | 17 18 | sstrd | ⊢ ( ( 𝜑  ∧  𝑠  ⊆  𝐶  ∧  𝑠  ≠  ∅ )  →  𝑠  ⊆  𝒫  𝑋 ) | 
						
							| 20 |  | simp3 | ⊢ ( ( 𝜑  ∧  𝑠  ⊆  𝐶  ∧  𝑠  ≠  ∅ )  →  𝑠  ≠  ∅ ) | 
						
							| 21 |  | rintn0 | ⊢ ( ( 𝑠  ⊆  𝒫  𝑋  ∧  𝑠  ≠  ∅ )  →  ( 𝑋  ∩  ∩  𝑠 )  =  ∩  𝑠 ) | 
						
							| 22 | 19 20 21 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑠  ⊆  𝐶  ∧  𝑠  ≠  ∅ )  →  ( 𝑋  ∩  ∩  𝑠 )  =  ∩  𝑠 ) | 
						
							| 23 | 2 | 3adant3 | ⊢ ( ( 𝜑  ∧  𝑠  ⊆  𝐶  ∧  𝑠  ≠  ∅ )  →  ( 𝑋  ∩  ∩  𝑠 )  ∈  𝐶 ) | 
						
							| 24 | 22 23 | eqeltrrd | ⊢ ( ( 𝜑  ∧  𝑠  ⊆  𝐶  ∧  𝑠  ≠  ∅ )  →  ∩  𝑠  ∈  𝐶 ) | 
						
							| 25 | 1 16 24 | ismred | ⊢ ( 𝜑  →  𝐶  ∈  ( Moore ‘ 𝑋 ) ) |