| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ismred2.ss |
⊢ ( 𝜑 → 𝐶 ⊆ 𝒫 𝑋 ) |
| 2 |
|
ismred2.in |
⊢ ( ( 𝜑 ∧ 𝑠 ⊆ 𝐶 ) → ( 𝑋 ∩ ∩ 𝑠 ) ∈ 𝐶 ) |
| 3 |
|
eqid |
⊢ ∅ = ∅ |
| 4 |
|
rint0 |
⊢ ( ∅ = ∅ → ( 𝑋 ∩ ∩ ∅ ) = 𝑋 ) |
| 5 |
3 4
|
ax-mp |
⊢ ( 𝑋 ∩ ∩ ∅ ) = 𝑋 |
| 6 |
|
0ss |
⊢ ∅ ⊆ 𝐶 |
| 7 |
|
0ex |
⊢ ∅ ∈ V |
| 8 |
|
sseq1 |
⊢ ( 𝑠 = ∅ → ( 𝑠 ⊆ 𝐶 ↔ ∅ ⊆ 𝐶 ) ) |
| 9 |
8
|
anbi2d |
⊢ ( 𝑠 = ∅ → ( ( 𝜑 ∧ 𝑠 ⊆ 𝐶 ) ↔ ( 𝜑 ∧ ∅ ⊆ 𝐶 ) ) ) |
| 10 |
|
inteq |
⊢ ( 𝑠 = ∅ → ∩ 𝑠 = ∩ ∅ ) |
| 11 |
10
|
ineq2d |
⊢ ( 𝑠 = ∅ → ( 𝑋 ∩ ∩ 𝑠 ) = ( 𝑋 ∩ ∩ ∅ ) ) |
| 12 |
11
|
eleq1d |
⊢ ( 𝑠 = ∅ → ( ( 𝑋 ∩ ∩ 𝑠 ) ∈ 𝐶 ↔ ( 𝑋 ∩ ∩ ∅ ) ∈ 𝐶 ) ) |
| 13 |
9 12
|
imbi12d |
⊢ ( 𝑠 = ∅ → ( ( ( 𝜑 ∧ 𝑠 ⊆ 𝐶 ) → ( 𝑋 ∩ ∩ 𝑠 ) ∈ 𝐶 ) ↔ ( ( 𝜑 ∧ ∅ ⊆ 𝐶 ) → ( 𝑋 ∩ ∩ ∅ ) ∈ 𝐶 ) ) ) |
| 14 |
7 13 2
|
vtocl |
⊢ ( ( 𝜑 ∧ ∅ ⊆ 𝐶 ) → ( 𝑋 ∩ ∩ ∅ ) ∈ 𝐶 ) |
| 15 |
6 14
|
mpan2 |
⊢ ( 𝜑 → ( 𝑋 ∩ ∩ ∅ ) ∈ 𝐶 ) |
| 16 |
5 15
|
eqeltrrid |
⊢ ( 𝜑 → 𝑋 ∈ 𝐶 ) |
| 17 |
|
simp2 |
⊢ ( ( 𝜑 ∧ 𝑠 ⊆ 𝐶 ∧ 𝑠 ≠ ∅ ) → 𝑠 ⊆ 𝐶 ) |
| 18 |
1
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑠 ⊆ 𝐶 ∧ 𝑠 ≠ ∅ ) → 𝐶 ⊆ 𝒫 𝑋 ) |
| 19 |
17 18
|
sstrd |
⊢ ( ( 𝜑 ∧ 𝑠 ⊆ 𝐶 ∧ 𝑠 ≠ ∅ ) → 𝑠 ⊆ 𝒫 𝑋 ) |
| 20 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑠 ⊆ 𝐶 ∧ 𝑠 ≠ ∅ ) → 𝑠 ≠ ∅ ) |
| 21 |
|
rintn0 |
⊢ ( ( 𝑠 ⊆ 𝒫 𝑋 ∧ 𝑠 ≠ ∅ ) → ( 𝑋 ∩ ∩ 𝑠 ) = ∩ 𝑠 ) |
| 22 |
19 20 21
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑠 ⊆ 𝐶 ∧ 𝑠 ≠ ∅ ) → ( 𝑋 ∩ ∩ 𝑠 ) = ∩ 𝑠 ) |
| 23 |
2
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑠 ⊆ 𝐶 ∧ 𝑠 ≠ ∅ ) → ( 𝑋 ∩ ∩ 𝑠 ) ∈ 𝐶 ) |
| 24 |
22 23
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ 𝑠 ⊆ 𝐶 ∧ 𝑠 ≠ ∅ ) → ∩ 𝑠 ∈ 𝐶 ) |
| 25 |
1 16 24
|
ismred |
⊢ ( 𝜑 → 𝐶 ∈ ( Moore ‘ 𝑋 ) ) |