| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ismred2.ss |  |-  ( ph -> C C_ ~P X ) | 
						
							| 2 |  | ismred2.in |  |-  ( ( ph /\ s C_ C ) -> ( X i^i |^| s ) e. C ) | 
						
							| 3 |  | eqid |  |-  (/) = (/) | 
						
							| 4 |  | rint0 |  |-  ( (/) = (/) -> ( X i^i |^| (/) ) = X ) | 
						
							| 5 | 3 4 | ax-mp |  |-  ( X i^i |^| (/) ) = X | 
						
							| 6 |  | 0ss |  |-  (/) C_ C | 
						
							| 7 |  | 0ex |  |-  (/) e. _V | 
						
							| 8 |  | sseq1 |  |-  ( s = (/) -> ( s C_ C <-> (/) C_ C ) ) | 
						
							| 9 | 8 | anbi2d |  |-  ( s = (/) -> ( ( ph /\ s C_ C ) <-> ( ph /\ (/) C_ C ) ) ) | 
						
							| 10 |  | inteq |  |-  ( s = (/) -> |^| s = |^| (/) ) | 
						
							| 11 | 10 | ineq2d |  |-  ( s = (/) -> ( X i^i |^| s ) = ( X i^i |^| (/) ) ) | 
						
							| 12 | 11 | eleq1d |  |-  ( s = (/) -> ( ( X i^i |^| s ) e. C <-> ( X i^i |^| (/) ) e. C ) ) | 
						
							| 13 | 9 12 | imbi12d |  |-  ( s = (/) -> ( ( ( ph /\ s C_ C ) -> ( X i^i |^| s ) e. C ) <-> ( ( ph /\ (/) C_ C ) -> ( X i^i |^| (/) ) e. C ) ) ) | 
						
							| 14 | 7 13 2 | vtocl |  |-  ( ( ph /\ (/) C_ C ) -> ( X i^i |^| (/) ) e. C ) | 
						
							| 15 | 6 14 | mpan2 |  |-  ( ph -> ( X i^i |^| (/) ) e. C ) | 
						
							| 16 | 5 15 | eqeltrrid |  |-  ( ph -> X e. C ) | 
						
							| 17 |  | simp2 |  |-  ( ( ph /\ s C_ C /\ s =/= (/) ) -> s C_ C ) | 
						
							| 18 | 1 | 3ad2ant1 |  |-  ( ( ph /\ s C_ C /\ s =/= (/) ) -> C C_ ~P X ) | 
						
							| 19 | 17 18 | sstrd |  |-  ( ( ph /\ s C_ C /\ s =/= (/) ) -> s C_ ~P X ) | 
						
							| 20 |  | simp3 |  |-  ( ( ph /\ s C_ C /\ s =/= (/) ) -> s =/= (/) ) | 
						
							| 21 |  | rintn0 |  |-  ( ( s C_ ~P X /\ s =/= (/) ) -> ( X i^i |^| s ) = |^| s ) | 
						
							| 22 | 19 20 21 | syl2anc |  |-  ( ( ph /\ s C_ C /\ s =/= (/) ) -> ( X i^i |^| s ) = |^| s ) | 
						
							| 23 | 2 | 3adant3 |  |-  ( ( ph /\ s C_ C /\ s =/= (/) ) -> ( X i^i |^| s ) e. C ) | 
						
							| 24 | 22 23 | eqeltrrd |  |-  ( ( ph /\ s C_ C /\ s =/= (/) ) -> |^| s e. C ) | 
						
							| 25 | 1 16 24 | ismred |  |-  ( ph -> C e. ( Moore ` X ) ) |