Description: Relative intersection of a nonempty set. (Contributed by Stefan O'Rear, 3-Apr-2015) (Revised by Mario Carneiro, 5-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rintn0 | |- ( ( X C_ ~P A /\ X =/= (/) ) -> ( A i^i |^| X ) = |^| X ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | intssuni2 | |- ( ( X C_ ~P A /\ X =/= (/) ) -> |^| X C_ U. ~P A ) | |
| 2 | ssid | |- ~P A C_ ~P A | |
| 3 | sspwuni | |- ( ~P A C_ ~P A <-> U. ~P A C_ A ) | |
| 4 | 2 3 | mpbi | |- U. ~P A C_ A | 
| 5 | 1 4 | sstrdi | |- ( ( X C_ ~P A /\ X =/= (/) ) -> |^| X C_ A ) | 
| 6 | sseqin2 | |- ( |^| X C_ A <-> ( A i^i |^| X ) = |^| X ) | |
| 7 | 5 6 | sylib | |- ( ( X C_ ~P A /\ X =/= (/) ) -> ( A i^i |^| X ) = |^| X ) |