Metamath Proof Explorer


Theorem rintn0

Description: Relative intersection of a nonempty set. (Contributed by Stefan O'Rear, 3-Apr-2015) (Revised by Mario Carneiro, 5-Jun-2015)

Ref Expression
Assertion rintn0 X𝒫AXAX=X

Proof

Step Hyp Ref Expression
1 intssuni2 X𝒫AXX𝒫A
2 ssid 𝒫A𝒫A
3 sspwuni 𝒫A𝒫A𝒫AA
4 2 3 mpbi 𝒫AA
5 1 4 sstrdi X𝒫AXXA
6 sseqin2 XAAX=X
7 5 6 sylib X𝒫AXAX=X