| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ismred.ss |  |-  ( ph -> C C_ ~P X ) | 
						
							| 2 |  | ismred.ba |  |-  ( ph -> X e. C ) | 
						
							| 3 |  | ismred.in |  |-  ( ( ph /\ s C_ C /\ s =/= (/) ) -> |^| s e. C ) | 
						
							| 4 |  | velpw |  |-  ( s e. ~P C <-> s C_ C ) | 
						
							| 5 | 3 | 3expia |  |-  ( ( ph /\ s C_ C ) -> ( s =/= (/) -> |^| s e. C ) ) | 
						
							| 6 | 4 5 | sylan2b |  |-  ( ( ph /\ s e. ~P C ) -> ( s =/= (/) -> |^| s e. C ) ) | 
						
							| 7 | 6 | ralrimiva |  |-  ( ph -> A. s e. ~P C ( s =/= (/) -> |^| s e. C ) ) | 
						
							| 8 |  | ismre |  |-  ( C e. ( Moore ` X ) <-> ( C C_ ~P X /\ X e. C /\ A. s e. ~P C ( s =/= (/) -> |^| s e. C ) ) ) | 
						
							| 9 | 1 2 7 8 | syl3anbrc |  |-  ( ph -> C e. ( Moore ` X ) ) |