| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ocvpj.k | ⊢ 𝐾  =  ( proj ‘ 𝑊 ) | 
						
							| 2 |  | ocvpj.o | ⊢  ⊥   =  ( ocv ‘ 𝑊 ) | 
						
							| 3 |  | eqid | ⊢ ( ClSubSp ‘ 𝑊 )  =  ( ClSubSp ‘ 𝑊 ) | 
						
							| 4 | 1 3 | pjcss | ⊢ ( 𝑊  ∈  PreHil  →  dom  𝐾  ⊆  ( ClSubSp ‘ 𝑊 ) ) | 
						
							| 5 | 4 | sselda | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝑇  ∈  dom  𝐾 )  →  𝑇  ∈  ( ClSubSp ‘ 𝑊 ) ) | 
						
							| 6 |  | eqid | ⊢ ( Base ‘ 𝑊 )  =  ( Base ‘ 𝑊 ) | 
						
							| 7 | 6 3 | cssss | ⊢ ( 𝑇  ∈  ( ClSubSp ‘ 𝑊 )  →  𝑇  ⊆  ( Base ‘ 𝑊 ) ) | 
						
							| 8 | 5 7 | syl | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝑇  ∈  dom  𝐾 )  →  𝑇  ⊆  ( Base ‘ 𝑊 ) ) | 
						
							| 9 |  | eqid | ⊢ ( LSubSp ‘ 𝑊 )  =  ( LSubSp ‘ 𝑊 ) | 
						
							| 10 | 6 2 9 | ocvlss | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝑇  ⊆  ( Base ‘ 𝑊 ) )  →  (  ⊥  ‘ 𝑇 )  ∈  ( LSubSp ‘ 𝑊 ) ) | 
						
							| 11 | 8 10 | syldan | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝑇  ∈  dom  𝐾 )  →  (  ⊥  ‘ 𝑇 )  ∈  ( LSubSp ‘ 𝑊 ) ) | 
						
							| 12 |  | phllmod | ⊢ ( 𝑊  ∈  PreHil  →  𝑊  ∈  LMod ) | 
						
							| 13 | 12 | adantr | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝑇  ∈  dom  𝐾 )  →  𝑊  ∈  LMod ) | 
						
							| 14 |  | lmodabl | ⊢ ( 𝑊  ∈  LMod  →  𝑊  ∈  Abel ) | 
						
							| 15 | 13 14 | syl | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝑇  ∈  dom  𝐾 )  →  𝑊  ∈  Abel ) | 
						
							| 16 | 9 | lsssssubg | ⊢ ( 𝑊  ∈  LMod  →  ( LSubSp ‘ 𝑊 )  ⊆  ( SubGrp ‘ 𝑊 ) ) | 
						
							| 17 | 13 16 | syl | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝑇  ∈  dom  𝐾 )  →  ( LSubSp ‘ 𝑊 )  ⊆  ( SubGrp ‘ 𝑊 ) ) | 
						
							| 18 | 17 11 | sseldd | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝑇  ∈  dom  𝐾 )  →  (  ⊥  ‘ 𝑇 )  ∈  ( SubGrp ‘ 𝑊 ) ) | 
						
							| 19 | 3 9 | csslss | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝑇  ∈  ( ClSubSp ‘ 𝑊 ) )  →  𝑇  ∈  ( LSubSp ‘ 𝑊 ) ) | 
						
							| 20 | 5 19 | syldan | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝑇  ∈  dom  𝐾 )  →  𝑇  ∈  ( LSubSp ‘ 𝑊 ) ) | 
						
							| 21 | 17 20 | sseldd | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝑇  ∈  dom  𝐾 )  →  𝑇  ∈  ( SubGrp ‘ 𝑊 ) ) | 
						
							| 22 |  | eqid | ⊢ ( LSSum ‘ 𝑊 )  =  ( LSSum ‘ 𝑊 ) | 
						
							| 23 | 22 | lsmcom | ⊢ ( ( 𝑊  ∈  Abel  ∧  (  ⊥  ‘ 𝑇 )  ∈  ( SubGrp ‘ 𝑊 )  ∧  𝑇  ∈  ( SubGrp ‘ 𝑊 ) )  →  ( (  ⊥  ‘ 𝑇 ) ( LSSum ‘ 𝑊 ) 𝑇 )  =  ( 𝑇 ( LSSum ‘ 𝑊 ) (  ⊥  ‘ 𝑇 ) ) ) | 
						
							| 24 | 15 18 21 23 | syl3anc | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝑇  ∈  dom  𝐾 )  →  ( (  ⊥  ‘ 𝑇 ) ( LSSum ‘ 𝑊 ) 𝑇 )  =  ( 𝑇 ( LSSum ‘ 𝑊 ) (  ⊥  ‘ 𝑇 ) ) ) | 
						
							| 25 | 2 3 | cssi | ⊢ ( 𝑇  ∈  ( ClSubSp ‘ 𝑊 )  →  𝑇  =  (  ⊥  ‘ (  ⊥  ‘ 𝑇 ) ) ) | 
						
							| 26 | 5 25 | syl | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝑇  ∈  dom  𝐾 )  →  𝑇  =  (  ⊥  ‘ (  ⊥  ‘ 𝑇 ) ) ) | 
						
							| 27 | 26 | oveq2d | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝑇  ∈  dom  𝐾 )  →  ( (  ⊥  ‘ 𝑇 ) ( LSSum ‘ 𝑊 ) 𝑇 )  =  ( (  ⊥  ‘ 𝑇 ) ( LSSum ‘ 𝑊 ) (  ⊥  ‘ (  ⊥  ‘ 𝑇 ) ) ) ) | 
						
							| 28 | 6 9 2 22 1 | pjdm2 | ⊢ ( 𝑊  ∈  PreHil  →  ( 𝑇  ∈  dom  𝐾  ↔  ( 𝑇  ∈  ( LSubSp ‘ 𝑊 )  ∧  ( 𝑇 ( LSSum ‘ 𝑊 ) (  ⊥  ‘ 𝑇 ) )  =  ( Base ‘ 𝑊 ) ) ) ) | 
						
							| 29 | 28 | simplbda | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝑇  ∈  dom  𝐾 )  →  ( 𝑇 ( LSSum ‘ 𝑊 ) (  ⊥  ‘ 𝑇 ) )  =  ( Base ‘ 𝑊 ) ) | 
						
							| 30 | 24 27 29 | 3eqtr3d | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝑇  ∈  dom  𝐾 )  →  ( (  ⊥  ‘ 𝑇 ) ( LSSum ‘ 𝑊 ) (  ⊥  ‘ (  ⊥  ‘ 𝑇 ) ) )  =  ( Base ‘ 𝑊 ) ) | 
						
							| 31 | 6 9 2 22 1 | pjdm2 | ⊢ ( 𝑊  ∈  PreHil  →  ( (  ⊥  ‘ 𝑇 )  ∈  dom  𝐾  ↔  ( (  ⊥  ‘ 𝑇 )  ∈  ( LSubSp ‘ 𝑊 )  ∧  ( (  ⊥  ‘ 𝑇 ) ( LSSum ‘ 𝑊 ) (  ⊥  ‘ (  ⊥  ‘ 𝑇 ) ) )  =  ( Base ‘ 𝑊 ) ) ) ) | 
						
							| 32 | 31 | adantr | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝑇  ∈  dom  𝐾 )  →  ( (  ⊥  ‘ 𝑇 )  ∈  dom  𝐾  ↔  ( (  ⊥  ‘ 𝑇 )  ∈  ( LSubSp ‘ 𝑊 )  ∧  ( (  ⊥  ‘ 𝑇 ) ( LSSum ‘ 𝑊 ) (  ⊥  ‘ (  ⊥  ‘ 𝑇 ) ) )  =  ( Base ‘ 𝑊 ) ) ) ) | 
						
							| 33 | 11 30 32 | mpbir2and | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝑇  ∈  dom  𝐾 )  →  (  ⊥  ‘ 𝑇 )  ∈  dom  𝐾 ) |