| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ocvpj.k |
⊢ 𝐾 = ( proj ‘ 𝑊 ) |
| 2 |
|
ocvpj.o |
⊢ ⊥ = ( ocv ‘ 𝑊 ) |
| 3 |
|
eqid |
⊢ ( ClSubSp ‘ 𝑊 ) = ( ClSubSp ‘ 𝑊 ) |
| 4 |
1 3
|
pjcss |
⊢ ( 𝑊 ∈ PreHil → dom 𝐾 ⊆ ( ClSubSp ‘ 𝑊 ) ) |
| 5 |
4
|
sselda |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾 ) → 𝑇 ∈ ( ClSubSp ‘ 𝑊 ) ) |
| 6 |
|
eqid |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) |
| 7 |
6 3
|
cssss |
⊢ ( 𝑇 ∈ ( ClSubSp ‘ 𝑊 ) → 𝑇 ⊆ ( Base ‘ 𝑊 ) ) |
| 8 |
5 7
|
syl |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾 ) → 𝑇 ⊆ ( Base ‘ 𝑊 ) ) |
| 9 |
|
eqid |
⊢ ( LSubSp ‘ 𝑊 ) = ( LSubSp ‘ 𝑊 ) |
| 10 |
6 2 9
|
ocvlss |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑇 ⊆ ( Base ‘ 𝑊 ) ) → ( ⊥ ‘ 𝑇 ) ∈ ( LSubSp ‘ 𝑊 ) ) |
| 11 |
8 10
|
syldan |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾 ) → ( ⊥ ‘ 𝑇 ) ∈ ( LSubSp ‘ 𝑊 ) ) |
| 12 |
|
phllmod |
⊢ ( 𝑊 ∈ PreHil → 𝑊 ∈ LMod ) |
| 13 |
12
|
adantr |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾 ) → 𝑊 ∈ LMod ) |
| 14 |
|
lmodabl |
⊢ ( 𝑊 ∈ LMod → 𝑊 ∈ Abel ) |
| 15 |
13 14
|
syl |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾 ) → 𝑊 ∈ Abel ) |
| 16 |
9
|
lsssssubg |
⊢ ( 𝑊 ∈ LMod → ( LSubSp ‘ 𝑊 ) ⊆ ( SubGrp ‘ 𝑊 ) ) |
| 17 |
13 16
|
syl |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾 ) → ( LSubSp ‘ 𝑊 ) ⊆ ( SubGrp ‘ 𝑊 ) ) |
| 18 |
17 11
|
sseldd |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾 ) → ( ⊥ ‘ 𝑇 ) ∈ ( SubGrp ‘ 𝑊 ) ) |
| 19 |
3 9
|
csslss |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑇 ∈ ( ClSubSp ‘ 𝑊 ) ) → 𝑇 ∈ ( LSubSp ‘ 𝑊 ) ) |
| 20 |
5 19
|
syldan |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾 ) → 𝑇 ∈ ( LSubSp ‘ 𝑊 ) ) |
| 21 |
17 20
|
sseldd |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾 ) → 𝑇 ∈ ( SubGrp ‘ 𝑊 ) ) |
| 22 |
|
eqid |
⊢ ( LSSum ‘ 𝑊 ) = ( LSSum ‘ 𝑊 ) |
| 23 |
22
|
lsmcom |
⊢ ( ( 𝑊 ∈ Abel ∧ ( ⊥ ‘ 𝑇 ) ∈ ( SubGrp ‘ 𝑊 ) ∧ 𝑇 ∈ ( SubGrp ‘ 𝑊 ) ) → ( ( ⊥ ‘ 𝑇 ) ( LSSum ‘ 𝑊 ) 𝑇 ) = ( 𝑇 ( LSSum ‘ 𝑊 ) ( ⊥ ‘ 𝑇 ) ) ) |
| 24 |
15 18 21 23
|
syl3anc |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾 ) → ( ( ⊥ ‘ 𝑇 ) ( LSSum ‘ 𝑊 ) 𝑇 ) = ( 𝑇 ( LSSum ‘ 𝑊 ) ( ⊥ ‘ 𝑇 ) ) ) |
| 25 |
2 3
|
cssi |
⊢ ( 𝑇 ∈ ( ClSubSp ‘ 𝑊 ) → 𝑇 = ( ⊥ ‘ ( ⊥ ‘ 𝑇 ) ) ) |
| 26 |
5 25
|
syl |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾 ) → 𝑇 = ( ⊥ ‘ ( ⊥ ‘ 𝑇 ) ) ) |
| 27 |
26
|
oveq2d |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾 ) → ( ( ⊥ ‘ 𝑇 ) ( LSSum ‘ 𝑊 ) 𝑇 ) = ( ( ⊥ ‘ 𝑇 ) ( LSSum ‘ 𝑊 ) ( ⊥ ‘ ( ⊥ ‘ 𝑇 ) ) ) ) |
| 28 |
6 9 2 22 1
|
pjdm2 |
⊢ ( 𝑊 ∈ PreHil → ( 𝑇 ∈ dom 𝐾 ↔ ( 𝑇 ∈ ( LSubSp ‘ 𝑊 ) ∧ ( 𝑇 ( LSSum ‘ 𝑊 ) ( ⊥ ‘ 𝑇 ) ) = ( Base ‘ 𝑊 ) ) ) ) |
| 29 |
28
|
simplbda |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾 ) → ( 𝑇 ( LSSum ‘ 𝑊 ) ( ⊥ ‘ 𝑇 ) ) = ( Base ‘ 𝑊 ) ) |
| 30 |
24 27 29
|
3eqtr3d |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾 ) → ( ( ⊥ ‘ 𝑇 ) ( LSSum ‘ 𝑊 ) ( ⊥ ‘ ( ⊥ ‘ 𝑇 ) ) ) = ( Base ‘ 𝑊 ) ) |
| 31 |
6 9 2 22 1
|
pjdm2 |
⊢ ( 𝑊 ∈ PreHil → ( ( ⊥ ‘ 𝑇 ) ∈ dom 𝐾 ↔ ( ( ⊥ ‘ 𝑇 ) ∈ ( LSubSp ‘ 𝑊 ) ∧ ( ( ⊥ ‘ 𝑇 ) ( LSSum ‘ 𝑊 ) ( ⊥ ‘ ( ⊥ ‘ 𝑇 ) ) ) = ( Base ‘ 𝑊 ) ) ) ) |
| 32 |
31
|
adantr |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾 ) → ( ( ⊥ ‘ 𝑇 ) ∈ dom 𝐾 ↔ ( ( ⊥ ‘ 𝑇 ) ∈ ( LSubSp ‘ 𝑊 ) ∧ ( ( ⊥ ‘ 𝑇 ) ( LSSum ‘ 𝑊 ) ( ⊥ ‘ ( ⊥ ‘ 𝑇 ) ) ) = ( Base ‘ 𝑊 ) ) ) ) |
| 33 |
11 30 32
|
mpbir2and |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑇 ∈ dom 𝐾 ) → ( ⊥ ‘ 𝑇 ) ∈ dom 𝐾 ) |