Description: The orthocomplement of a projection subspace is a projection subspace. (Contributed by Mario Carneiro, 16-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ocvpj.k | |
|
ocvpj.o | |
||
Assertion | ocvpj | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ocvpj.k | |
|
2 | ocvpj.o | |
|
3 | eqid | |
|
4 | 1 3 | pjcss | |
5 | 4 | sselda | |
6 | eqid | |
|
7 | 6 3 | cssss | |
8 | 5 7 | syl | |
9 | eqid | |
|
10 | 6 2 9 | ocvlss | |
11 | 8 10 | syldan | |
12 | phllmod | |
|
13 | 12 | adantr | |
14 | lmodabl | |
|
15 | 13 14 | syl | |
16 | 9 | lsssssubg | |
17 | 13 16 | syl | |
18 | 17 11 | sseldd | |
19 | 3 9 | csslss | |
20 | 5 19 | syldan | |
21 | 17 20 | sseldd | |
22 | eqid | |
|
23 | 22 | lsmcom | |
24 | 15 18 21 23 | syl3anc | |
25 | 2 3 | cssi | |
26 | 5 25 | syl | |
27 | 26 | oveq2d | |
28 | 6 9 2 22 1 | pjdm2 | |
29 | 28 | simplbda | |
30 | 24 27 29 | 3eqtr3d | |
31 | 6 9 2 22 1 | pjdm2 | |
32 | 31 | adantr | |
33 | 11 30 32 | mpbir2and | |