Step |
Hyp |
Ref |
Expression |
1 |
|
ocvpj.k |
|
2 |
|
ocvpj.o |
|
3 |
|
eqid |
|
4 |
1 3
|
pjcss |
|
5 |
4
|
sselda |
|
6 |
|
eqid |
|
7 |
6 3
|
cssss |
|
8 |
5 7
|
syl |
|
9 |
|
eqid |
|
10 |
6 2 9
|
ocvlss |
|
11 |
8 10
|
syldan |
|
12 |
|
phllmod |
|
13 |
12
|
adantr |
|
14 |
|
lmodabl |
|
15 |
13 14
|
syl |
|
16 |
9
|
lsssssubg |
|
17 |
13 16
|
syl |
|
18 |
17 11
|
sseldd |
|
19 |
3 9
|
csslss |
|
20 |
5 19
|
syldan |
|
21 |
17 20
|
sseldd |
|
22 |
|
eqid |
|
23 |
22
|
lsmcom |
|
24 |
15 18 21 23
|
syl3anc |
|
25 |
2 3
|
cssi |
|
26 |
5 25
|
syl |
|
27 |
26
|
oveq2d |
|
28 |
6 9 2 22 1
|
pjdm2 |
|
29 |
28
|
simplbda |
|
30 |
24 27 29
|
3eqtr3d |
|
31 |
6 9 2 22 1
|
pjdm2 |
|
32 |
31
|
adantr |
|
33 |
11 30 32
|
mpbir2and |
|