Metamath Proof Explorer


Theorem ocvpj

Description: The orthocomplement of a projection subspace is a projection subspace. (Contributed by Mario Carneiro, 16-Oct-2015)

Ref Expression
Hypotheses ocvpj.k K=projW
ocvpj.o ˙=ocvW
Assertion ocvpj WPreHilTdomK˙TdomK

Proof

Step Hyp Ref Expression
1 ocvpj.k K=projW
2 ocvpj.o ˙=ocvW
3 eqid ClSubSpW=ClSubSpW
4 1 3 pjcss WPreHildomKClSubSpW
5 4 sselda WPreHilTdomKTClSubSpW
6 eqid BaseW=BaseW
7 6 3 cssss TClSubSpWTBaseW
8 5 7 syl WPreHilTdomKTBaseW
9 eqid LSubSpW=LSubSpW
10 6 2 9 ocvlss WPreHilTBaseW˙TLSubSpW
11 8 10 syldan WPreHilTdomK˙TLSubSpW
12 phllmod WPreHilWLMod
13 12 adantr WPreHilTdomKWLMod
14 lmodabl WLModWAbel
15 13 14 syl WPreHilTdomKWAbel
16 9 lsssssubg WLModLSubSpWSubGrpW
17 13 16 syl WPreHilTdomKLSubSpWSubGrpW
18 17 11 sseldd WPreHilTdomK˙TSubGrpW
19 3 9 csslss WPreHilTClSubSpWTLSubSpW
20 5 19 syldan WPreHilTdomKTLSubSpW
21 17 20 sseldd WPreHilTdomKTSubGrpW
22 eqid LSSumW=LSSumW
23 22 lsmcom WAbel˙TSubGrpWTSubGrpW˙TLSSumWT=TLSSumW˙T
24 15 18 21 23 syl3anc WPreHilTdomK˙TLSSumWT=TLSSumW˙T
25 2 3 cssi TClSubSpWT=˙˙T
26 5 25 syl WPreHilTdomKT=˙˙T
27 26 oveq2d WPreHilTdomK˙TLSSumWT=˙TLSSumW˙˙T
28 6 9 2 22 1 pjdm2 WPreHilTdomKTLSubSpWTLSSumW˙T=BaseW
29 28 simplbda WPreHilTdomKTLSSumW˙T=BaseW
30 24 27 29 3eqtr3d WPreHilTdomK˙TLSSumW˙˙T=BaseW
31 6 9 2 22 1 pjdm2 WPreHil˙TdomK˙TLSubSpW˙TLSSumW˙˙T=BaseW
32 31 adantr WPreHilTdomK˙TdomK˙TLSubSpW˙TLSSumW˙˙T=BaseW
33 11 30 32 mpbir2and WPreHilTdomK˙TdomK