| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ocvpj.k |
|- K = ( proj ` W ) |
| 2 |
|
ocvpj.o |
|- ._|_ = ( ocv ` W ) |
| 3 |
|
eqid |
|- ( ClSubSp ` W ) = ( ClSubSp ` W ) |
| 4 |
1 3
|
pjcss |
|- ( W e. PreHil -> dom K C_ ( ClSubSp ` W ) ) |
| 5 |
4
|
sselda |
|- ( ( W e. PreHil /\ T e. dom K ) -> T e. ( ClSubSp ` W ) ) |
| 6 |
|
eqid |
|- ( Base ` W ) = ( Base ` W ) |
| 7 |
6 3
|
cssss |
|- ( T e. ( ClSubSp ` W ) -> T C_ ( Base ` W ) ) |
| 8 |
5 7
|
syl |
|- ( ( W e. PreHil /\ T e. dom K ) -> T C_ ( Base ` W ) ) |
| 9 |
|
eqid |
|- ( LSubSp ` W ) = ( LSubSp ` W ) |
| 10 |
6 2 9
|
ocvlss |
|- ( ( W e. PreHil /\ T C_ ( Base ` W ) ) -> ( ._|_ ` T ) e. ( LSubSp ` W ) ) |
| 11 |
8 10
|
syldan |
|- ( ( W e. PreHil /\ T e. dom K ) -> ( ._|_ ` T ) e. ( LSubSp ` W ) ) |
| 12 |
|
phllmod |
|- ( W e. PreHil -> W e. LMod ) |
| 13 |
12
|
adantr |
|- ( ( W e. PreHil /\ T e. dom K ) -> W e. LMod ) |
| 14 |
|
lmodabl |
|- ( W e. LMod -> W e. Abel ) |
| 15 |
13 14
|
syl |
|- ( ( W e. PreHil /\ T e. dom K ) -> W e. Abel ) |
| 16 |
9
|
lsssssubg |
|- ( W e. LMod -> ( LSubSp ` W ) C_ ( SubGrp ` W ) ) |
| 17 |
13 16
|
syl |
|- ( ( W e. PreHil /\ T e. dom K ) -> ( LSubSp ` W ) C_ ( SubGrp ` W ) ) |
| 18 |
17 11
|
sseldd |
|- ( ( W e. PreHil /\ T e. dom K ) -> ( ._|_ ` T ) e. ( SubGrp ` W ) ) |
| 19 |
3 9
|
csslss |
|- ( ( W e. PreHil /\ T e. ( ClSubSp ` W ) ) -> T e. ( LSubSp ` W ) ) |
| 20 |
5 19
|
syldan |
|- ( ( W e. PreHil /\ T e. dom K ) -> T e. ( LSubSp ` W ) ) |
| 21 |
17 20
|
sseldd |
|- ( ( W e. PreHil /\ T e. dom K ) -> T e. ( SubGrp ` W ) ) |
| 22 |
|
eqid |
|- ( LSSum ` W ) = ( LSSum ` W ) |
| 23 |
22
|
lsmcom |
|- ( ( W e. Abel /\ ( ._|_ ` T ) e. ( SubGrp ` W ) /\ T e. ( SubGrp ` W ) ) -> ( ( ._|_ ` T ) ( LSSum ` W ) T ) = ( T ( LSSum ` W ) ( ._|_ ` T ) ) ) |
| 24 |
15 18 21 23
|
syl3anc |
|- ( ( W e. PreHil /\ T e. dom K ) -> ( ( ._|_ ` T ) ( LSSum ` W ) T ) = ( T ( LSSum ` W ) ( ._|_ ` T ) ) ) |
| 25 |
2 3
|
cssi |
|- ( T e. ( ClSubSp ` W ) -> T = ( ._|_ ` ( ._|_ ` T ) ) ) |
| 26 |
5 25
|
syl |
|- ( ( W e. PreHil /\ T e. dom K ) -> T = ( ._|_ ` ( ._|_ ` T ) ) ) |
| 27 |
26
|
oveq2d |
|- ( ( W e. PreHil /\ T e. dom K ) -> ( ( ._|_ ` T ) ( LSSum ` W ) T ) = ( ( ._|_ ` T ) ( LSSum ` W ) ( ._|_ ` ( ._|_ ` T ) ) ) ) |
| 28 |
6 9 2 22 1
|
pjdm2 |
|- ( W e. PreHil -> ( T e. dom K <-> ( T e. ( LSubSp ` W ) /\ ( T ( LSSum ` W ) ( ._|_ ` T ) ) = ( Base ` W ) ) ) ) |
| 29 |
28
|
simplbda |
|- ( ( W e. PreHil /\ T e. dom K ) -> ( T ( LSSum ` W ) ( ._|_ ` T ) ) = ( Base ` W ) ) |
| 30 |
24 27 29
|
3eqtr3d |
|- ( ( W e. PreHil /\ T e. dom K ) -> ( ( ._|_ ` T ) ( LSSum ` W ) ( ._|_ ` ( ._|_ ` T ) ) ) = ( Base ` W ) ) |
| 31 |
6 9 2 22 1
|
pjdm2 |
|- ( W e. PreHil -> ( ( ._|_ ` T ) e. dom K <-> ( ( ._|_ ` T ) e. ( LSubSp ` W ) /\ ( ( ._|_ ` T ) ( LSSum ` W ) ( ._|_ ` ( ._|_ ` T ) ) ) = ( Base ` W ) ) ) ) |
| 32 |
31
|
adantr |
|- ( ( W e. PreHil /\ T e. dom K ) -> ( ( ._|_ ` T ) e. dom K <-> ( ( ._|_ ` T ) e. ( LSubSp ` W ) /\ ( ( ._|_ ` T ) ( LSSum ` W ) ( ._|_ ` ( ._|_ ` T ) ) ) = ( Base ` W ) ) ) ) |
| 33 |
11 30 32
|
mpbir2and |
|- ( ( W e. PreHil /\ T e. dom K ) -> ( ._|_ ` T ) e. dom K ) |