Step |
Hyp |
Ref |
Expression |
1 |
|
ocvpj.k |
|- K = ( proj ` W ) |
2 |
|
ocvpj.o |
|- ._|_ = ( ocv ` W ) |
3 |
|
eqid |
|- ( ClSubSp ` W ) = ( ClSubSp ` W ) |
4 |
1 3
|
pjcss |
|- ( W e. PreHil -> dom K C_ ( ClSubSp ` W ) ) |
5 |
4
|
sselda |
|- ( ( W e. PreHil /\ T e. dom K ) -> T e. ( ClSubSp ` W ) ) |
6 |
|
eqid |
|- ( Base ` W ) = ( Base ` W ) |
7 |
6 3
|
cssss |
|- ( T e. ( ClSubSp ` W ) -> T C_ ( Base ` W ) ) |
8 |
5 7
|
syl |
|- ( ( W e. PreHil /\ T e. dom K ) -> T C_ ( Base ` W ) ) |
9 |
|
eqid |
|- ( LSubSp ` W ) = ( LSubSp ` W ) |
10 |
6 2 9
|
ocvlss |
|- ( ( W e. PreHil /\ T C_ ( Base ` W ) ) -> ( ._|_ ` T ) e. ( LSubSp ` W ) ) |
11 |
8 10
|
syldan |
|- ( ( W e. PreHil /\ T e. dom K ) -> ( ._|_ ` T ) e. ( LSubSp ` W ) ) |
12 |
|
phllmod |
|- ( W e. PreHil -> W e. LMod ) |
13 |
12
|
adantr |
|- ( ( W e. PreHil /\ T e. dom K ) -> W e. LMod ) |
14 |
|
lmodabl |
|- ( W e. LMod -> W e. Abel ) |
15 |
13 14
|
syl |
|- ( ( W e. PreHil /\ T e. dom K ) -> W e. Abel ) |
16 |
9
|
lsssssubg |
|- ( W e. LMod -> ( LSubSp ` W ) C_ ( SubGrp ` W ) ) |
17 |
13 16
|
syl |
|- ( ( W e. PreHil /\ T e. dom K ) -> ( LSubSp ` W ) C_ ( SubGrp ` W ) ) |
18 |
17 11
|
sseldd |
|- ( ( W e. PreHil /\ T e. dom K ) -> ( ._|_ ` T ) e. ( SubGrp ` W ) ) |
19 |
3 9
|
csslss |
|- ( ( W e. PreHil /\ T e. ( ClSubSp ` W ) ) -> T e. ( LSubSp ` W ) ) |
20 |
5 19
|
syldan |
|- ( ( W e. PreHil /\ T e. dom K ) -> T e. ( LSubSp ` W ) ) |
21 |
17 20
|
sseldd |
|- ( ( W e. PreHil /\ T e. dom K ) -> T e. ( SubGrp ` W ) ) |
22 |
|
eqid |
|- ( LSSum ` W ) = ( LSSum ` W ) |
23 |
22
|
lsmcom |
|- ( ( W e. Abel /\ ( ._|_ ` T ) e. ( SubGrp ` W ) /\ T e. ( SubGrp ` W ) ) -> ( ( ._|_ ` T ) ( LSSum ` W ) T ) = ( T ( LSSum ` W ) ( ._|_ ` T ) ) ) |
24 |
15 18 21 23
|
syl3anc |
|- ( ( W e. PreHil /\ T e. dom K ) -> ( ( ._|_ ` T ) ( LSSum ` W ) T ) = ( T ( LSSum ` W ) ( ._|_ ` T ) ) ) |
25 |
2 3
|
cssi |
|- ( T e. ( ClSubSp ` W ) -> T = ( ._|_ ` ( ._|_ ` T ) ) ) |
26 |
5 25
|
syl |
|- ( ( W e. PreHil /\ T e. dom K ) -> T = ( ._|_ ` ( ._|_ ` T ) ) ) |
27 |
26
|
oveq2d |
|- ( ( W e. PreHil /\ T e. dom K ) -> ( ( ._|_ ` T ) ( LSSum ` W ) T ) = ( ( ._|_ ` T ) ( LSSum ` W ) ( ._|_ ` ( ._|_ ` T ) ) ) ) |
28 |
6 9 2 22 1
|
pjdm2 |
|- ( W e. PreHil -> ( T e. dom K <-> ( T e. ( LSubSp ` W ) /\ ( T ( LSSum ` W ) ( ._|_ ` T ) ) = ( Base ` W ) ) ) ) |
29 |
28
|
simplbda |
|- ( ( W e. PreHil /\ T e. dom K ) -> ( T ( LSSum ` W ) ( ._|_ ` T ) ) = ( Base ` W ) ) |
30 |
24 27 29
|
3eqtr3d |
|- ( ( W e. PreHil /\ T e. dom K ) -> ( ( ._|_ ` T ) ( LSSum ` W ) ( ._|_ ` ( ._|_ ` T ) ) ) = ( Base ` W ) ) |
31 |
6 9 2 22 1
|
pjdm2 |
|- ( W e. PreHil -> ( ( ._|_ ` T ) e. dom K <-> ( ( ._|_ ` T ) e. ( LSubSp ` W ) /\ ( ( ._|_ ` T ) ( LSSum ` W ) ( ._|_ ` ( ._|_ ` T ) ) ) = ( Base ` W ) ) ) ) |
32 |
31
|
adantr |
|- ( ( W e. PreHil /\ T e. dom K ) -> ( ( ._|_ ` T ) e. dom K <-> ( ( ._|_ ` T ) e. ( LSubSp ` W ) /\ ( ( ._|_ ` T ) ( LSSum ` W ) ( ._|_ ` ( ._|_ ` T ) ) ) = ( Base ` W ) ) ) ) |
33 |
11 30 32
|
mpbir2and |
|- ( ( W e. PreHil /\ T e. dom K ) -> ( ._|_ ` T ) e. dom K ) |