| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ocvpj.k |  |-  K = ( proj ` W ) | 
						
							| 2 |  | ocvpj.o |  |-  ._|_ = ( ocv ` W ) | 
						
							| 3 |  | eqid |  |-  ( ClSubSp ` W ) = ( ClSubSp ` W ) | 
						
							| 4 | 1 3 | pjcss |  |-  ( W e. PreHil -> dom K C_ ( ClSubSp ` W ) ) | 
						
							| 5 | 4 | sselda |  |-  ( ( W e. PreHil /\ T e. dom K ) -> T e. ( ClSubSp ` W ) ) | 
						
							| 6 |  | eqid |  |-  ( Base ` W ) = ( Base ` W ) | 
						
							| 7 | 6 3 | cssss |  |-  ( T e. ( ClSubSp ` W ) -> T C_ ( Base ` W ) ) | 
						
							| 8 | 5 7 | syl |  |-  ( ( W e. PreHil /\ T e. dom K ) -> T C_ ( Base ` W ) ) | 
						
							| 9 |  | eqid |  |-  ( LSubSp ` W ) = ( LSubSp ` W ) | 
						
							| 10 | 6 2 9 | ocvlss |  |-  ( ( W e. PreHil /\ T C_ ( Base ` W ) ) -> ( ._|_ ` T ) e. ( LSubSp ` W ) ) | 
						
							| 11 | 8 10 | syldan |  |-  ( ( W e. PreHil /\ T e. dom K ) -> ( ._|_ ` T ) e. ( LSubSp ` W ) ) | 
						
							| 12 |  | phllmod |  |-  ( W e. PreHil -> W e. LMod ) | 
						
							| 13 | 12 | adantr |  |-  ( ( W e. PreHil /\ T e. dom K ) -> W e. LMod ) | 
						
							| 14 |  | lmodabl |  |-  ( W e. LMod -> W e. Abel ) | 
						
							| 15 | 13 14 | syl |  |-  ( ( W e. PreHil /\ T e. dom K ) -> W e. Abel ) | 
						
							| 16 | 9 | lsssssubg |  |-  ( W e. LMod -> ( LSubSp ` W ) C_ ( SubGrp ` W ) ) | 
						
							| 17 | 13 16 | syl |  |-  ( ( W e. PreHil /\ T e. dom K ) -> ( LSubSp ` W ) C_ ( SubGrp ` W ) ) | 
						
							| 18 | 17 11 | sseldd |  |-  ( ( W e. PreHil /\ T e. dom K ) -> ( ._|_ ` T ) e. ( SubGrp ` W ) ) | 
						
							| 19 | 3 9 | csslss |  |-  ( ( W e. PreHil /\ T e. ( ClSubSp ` W ) ) -> T e. ( LSubSp ` W ) ) | 
						
							| 20 | 5 19 | syldan |  |-  ( ( W e. PreHil /\ T e. dom K ) -> T e. ( LSubSp ` W ) ) | 
						
							| 21 | 17 20 | sseldd |  |-  ( ( W e. PreHil /\ T e. dom K ) -> T e. ( SubGrp ` W ) ) | 
						
							| 22 |  | eqid |  |-  ( LSSum ` W ) = ( LSSum ` W ) | 
						
							| 23 | 22 | lsmcom |  |-  ( ( W e. Abel /\ ( ._|_ ` T ) e. ( SubGrp ` W ) /\ T e. ( SubGrp ` W ) ) -> ( ( ._|_ ` T ) ( LSSum ` W ) T ) = ( T ( LSSum ` W ) ( ._|_ ` T ) ) ) | 
						
							| 24 | 15 18 21 23 | syl3anc |  |-  ( ( W e. PreHil /\ T e. dom K ) -> ( ( ._|_ ` T ) ( LSSum ` W ) T ) = ( T ( LSSum ` W ) ( ._|_ ` T ) ) ) | 
						
							| 25 | 2 3 | cssi |  |-  ( T e. ( ClSubSp ` W ) -> T = ( ._|_ ` ( ._|_ ` T ) ) ) | 
						
							| 26 | 5 25 | syl |  |-  ( ( W e. PreHil /\ T e. dom K ) -> T = ( ._|_ ` ( ._|_ ` T ) ) ) | 
						
							| 27 | 26 | oveq2d |  |-  ( ( W e. PreHil /\ T e. dom K ) -> ( ( ._|_ ` T ) ( LSSum ` W ) T ) = ( ( ._|_ ` T ) ( LSSum ` W ) ( ._|_ ` ( ._|_ ` T ) ) ) ) | 
						
							| 28 | 6 9 2 22 1 | pjdm2 |  |-  ( W e. PreHil -> ( T e. dom K <-> ( T e. ( LSubSp ` W ) /\ ( T ( LSSum ` W ) ( ._|_ ` T ) ) = ( Base ` W ) ) ) ) | 
						
							| 29 | 28 | simplbda |  |-  ( ( W e. PreHil /\ T e. dom K ) -> ( T ( LSSum ` W ) ( ._|_ ` T ) ) = ( Base ` W ) ) | 
						
							| 30 | 24 27 29 | 3eqtr3d |  |-  ( ( W e. PreHil /\ T e. dom K ) -> ( ( ._|_ ` T ) ( LSSum ` W ) ( ._|_ ` ( ._|_ ` T ) ) ) = ( Base ` W ) ) | 
						
							| 31 | 6 9 2 22 1 | pjdm2 |  |-  ( W e. PreHil -> ( ( ._|_ ` T ) e. dom K <-> ( ( ._|_ ` T ) e. ( LSubSp ` W ) /\ ( ( ._|_ ` T ) ( LSSum ` W ) ( ._|_ ` ( ._|_ ` T ) ) ) = ( Base ` W ) ) ) ) | 
						
							| 32 | 31 | adantr |  |-  ( ( W e. PreHil /\ T e. dom K ) -> ( ( ._|_ ` T ) e. dom K <-> ( ( ._|_ ` T ) e. ( LSubSp ` W ) /\ ( ( ._|_ ` T ) ( LSSum ` W ) ( ._|_ ` ( ._|_ ` T ) ) ) = ( Base ` W ) ) ) ) | 
						
							| 33 | 11 30 32 | mpbir2and |  |-  ( ( W e. PreHil /\ T e. dom K ) -> ( ._|_ ` T ) e. dom K ) |