| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ishil.k |
|- K = ( proj ` H ) |
| 2 |
|
ishil.c |
|- C = ( ClSubSp ` H ) |
| 3 |
|
fveq2 |
|- ( h = H -> ( proj ` h ) = ( proj ` H ) ) |
| 4 |
3 1
|
eqtr4di |
|- ( h = H -> ( proj ` h ) = K ) |
| 5 |
4
|
dmeqd |
|- ( h = H -> dom ( proj ` h ) = dom K ) |
| 6 |
|
fveq2 |
|- ( h = H -> ( ClSubSp ` h ) = ( ClSubSp ` H ) ) |
| 7 |
6 2
|
eqtr4di |
|- ( h = H -> ( ClSubSp ` h ) = C ) |
| 8 |
5 7
|
eqeq12d |
|- ( h = H -> ( dom ( proj ` h ) = ( ClSubSp ` h ) <-> dom K = C ) ) |
| 9 |
|
df-hil |
|- Hil = { h e. PreHil | dom ( proj ` h ) = ( ClSubSp ` h ) } |
| 10 |
8 9
|
elrab2 |
|- ( H e. Hil <-> ( H e. PreHil /\ dom K = C ) ) |