Metamath Proof Explorer


Theorem ishil

Description: The predicate "is a Hilbert space" (over a *-division ring). A Hilbert space is a pre-Hilbert space such that all closed subspaces have a projection decomposition. (Contributed by NM, 7-Oct-2011) (Revised by Mario Carneiro, 22-Jun-2014)

Ref Expression
Hypotheses ishil.k
|- K = ( proj ` H )
ishil.c
|- C = ( ClSubSp ` H )
Assertion ishil
|- ( H e. Hil <-> ( H e. PreHil /\ dom K = C ) )

Proof

Step Hyp Ref Expression
1 ishil.k
 |-  K = ( proj ` H )
2 ishil.c
 |-  C = ( ClSubSp ` H )
3 fveq2
 |-  ( h = H -> ( proj ` h ) = ( proj ` H ) )
4 3 1 eqtr4di
 |-  ( h = H -> ( proj ` h ) = K )
5 4 dmeqd
 |-  ( h = H -> dom ( proj ` h ) = dom K )
6 fveq2
 |-  ( h = H -> ( ClSubSp ` h ) = ( ClSubSp ` H ) )
7 6 2 eqtr4di
 |-  ( h = H -> ( ClSubSp ` h ) = C )
8 5 7 eqeq12d
 |-  ( h = H -> ( dom ( proj ` h ) = ( ClSubSp ` h ) <-> dom K = C ) )
9 df-hil
 |-  Hil = { h e. PreHil | dom ( proj ` h ) = ( ClSubSp ` h ) }
10 8 9 elrab2
 |-  ( H e. Hil <-> ( H e. PreHil /\ dom K = C ) )