| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ishil.k |  |-  K = ( proj ` H ) | 
						
							| 2 |  | ishil.c |  |-  C = ( ClSubSp ` H ) | 
						
							| 3 |  | fveq2 |  |-  ( h = H -> ( proj ` h ) = ( proj ` H ) ) | 
						
							| 4 | 3 1 | eqtr4di |  |-  ( h = H -> ( proj ` h ) = K ) | 
						
							| 5 | 4 | dmeqd |  |-  ( h = H -> dom ( proj ` h ) = dom K ) | 
						
							| 6 |  | fveq2 |  |-  ( h = H -> ( ClSubSp ` h ) = ( ClSubSp ` H ) ) | 
						
							| 7 | 6 2 | eqtr4di |  |-  ( h = H -> ( ClSubSp ` h ) = C ) | 
						
							| 8 | 5 7 | eqeq12d |  |-  ( h = H -> ( dom ( proj ` h ) = ( ClSubSp ` h ) <-> dom K = C ) ) | 
						
							| 9 |  | df-hil |  |-  Hil = { h e. PreHil | dom ( proj ` h ) = ( ClSubSp ` h ) } | 
						
							| 10 | 8 9 | elrab2 |  |-  ( H e. Hil <-> ( H e. PreHil /\ dom K = C ) ) |