| Step | Hyp | Ref | Expression | 
						
							| 1 |  | isobs.v | ⊢ 𝑉  =  ( Base ‘ 𝑊 ) | 
						
							| 2 |  | isobs.h | ⊢  ,   =  ( ·𝑖 ‘ 𝑊 ) | 
						
							| 3 |  | isobs.f | ⊢ 𝐹  =  ( Scalar ‘ 𝑊 ) | 
						
							| 4 |  | isobs.u | ⊢  1   =  ( 1r ‘ 𝐹 ) | 
						
							| 5 |  | isobs.z | ⊢  0   =  ( 0g ‘ 𝐹 ) | 
						
							| 6 |  | isobs.o | ⊢  ⊥   =  ( ocv ‘ 𝑊 ) | 
						
							| 7 |  | isobs.y | ⊢ 𝑌  =  ( 0g ‘ 𝑊 ) | 
						
							| 8 |  | df-obs | ⊢ OBasis  =  ( ℎ  ∈  PreHil  ↦  { 𝑏  ∈  𝒫  ( Base ‘ ℎ )  ∣  ( ∀ 𝑥  ∈  𝑏 ∀ 𝑦  ∈  𝑏 ( 𝑥 ( ·𝑖 ‘ ℎ ) 𝑦 )  =  if ( 𝑥  =  𝑦 ,  ( 1r ‘ ( Scalar ‘ ℎ ) ) ,  ( 0g ‘ ( Scalar ‘ ℎ ) ) )  ∧  ( ( ocv ‘ ℎ ) ‘ 𝑏 )  =  { ( 0g ‘ ℎ ) } ) } ) | 
						
							| 9 | 8 | mptrcl | ⊢ ( 𝐵  ∈  ( OBasis ‘ 𝑊 )  →  𝑊  ∈  PreHil ) | 
						
							| 10 |  | fveq2 | ⊢ ( ℎ  =  𝑊  →  ( Base ‘ ℎ )  =  ( Base ‘ 𝑊 ) ) | 
						
							| 11 | 10 1 | eqtr4di | ⊢ ( ℎ  =  𝑊  →  ( Base ‘ ℎ )  =  𝑉 ) | 
						
							| 12 | 11 | pweqd | ⊢ ( ℎ  =  𝑊  →  𝒫  ( Base ‘ ℎ )  =  𝒫  𝑉 ) | 
						
							| 13 |  | fveq2 | ⊢ ( ℎ  =  𝑊  →  ( ·𝑖 ‘ ℎ )  =  ( ·𝑖 ‘ 𝑊 ) ) | 
						
							| 14 | 13 2 | eqtr4di | ⊢ ( ℎ  =  𝑊  →  ( ·𝑖 ‘ ℎ )  =   ,  ) | 
						
							| 15 | 14 | oveqd | ⊢ ( ℎ  =  𝑊  →  ( 𝑥 ( ·𝑖 ‘ ℎ ) 𝑦 )  =  ( 𝑥  ,  𝑦 ) ) | 
						
							| 16 |  | fveq2 | ⊢ ( ℎ  =  𝑊  →  ( Scalar ‘ ℎ )  =  ( Scalar ‘ 𝑊 ) ) | 
						
							| 17 | 16 3 | eqtr4di | ⊢ ( ℎ  =  𝑊  →  ( Scalar ‘ ℎ )  =  𝐹 ) | 
						
							| 18 | 17 | fveq2d | ⊢ ( ℎ  =  𝑊  →  ( 1r ‘ ( Scalar ‘ ℎ ) )  =  ( 1r ‘ 𝐹 ) ) | 
						
							| 19 | 18 4 | eqtr4di | ⊢ ( ℎ  =  𝑊  →  ( 1r ‘ ( Scalar ‘ ℎ ) )  =   1  ) | 
						
							| 20 | 17 | fveq2d | ⊢ ( ℎ  =  𝑊  →  ( 0g ‘ ( Scalar ‘ ℎ ) )  =  ( 0g ‘ 𝐹 ) ) | 
						
							| 21 | 20 5 | eqtr4di | ⊢ ( ℎ  =  𝑊  →  ( 0g ‘ ( Scalar ‘ ℎ ) )  =   0  ) | 
						
							| 22 | 19 21 | ifeq12d | ⊢ ( ℎ  =  𝑊  →  if ( 𝑥  =  𝑦 ,  ( 1r ‘ ( Scalar ‘ ℎ ) ) ,  ( 0g ‘ ( Scalar ‘ ℎ ) ) )  =  if ( 𝑥  =  𝑦 ,   1  ,   0  ) ) | 
						
							| 23 | 15 22 | eqeq12d | ⊢ ( ℎ  =  𝑊  →  ( ( 𝑥 ( ·𝑖 ‘ ℎ ) 𝑦 )  =  if ( 𝑥  =  𝑦 ,  ( 1r ‘ ( Scalar ‘ ℎ ) ) ,  ( 0g ‘ ( Scalar ‘ ℎ ) ) )  ↔  ( 𝑥  ,  𝑦 )  =  if ( 𝑥  =  𝑦 ,   1  ,   0  ) ) ) | 
						
							| 24 | 23 | 2ralbidv | ⊢ ( ℎ  =  𝑊  →  ( ∀ 𝑥  ∈  𝑏 ∀ 𝑦  ∈  𝑏 ( 𝑥 ( ·𝑖 ‘ ℎ ) 𝑦 )  =  if ( 𝑥  =  𝑦 ,  ( 1r ‘ ( Scalar ‘ ℎ ) ) ,  ( 0g ‘ ( Scalar ‘ ℎ ) ) )  ↔  ∀ 𝑥  ∈  𝑏 ∀ 𝑦  ∈  𝑏 ( 𝑥  ,  𝑦 )  =  if ( 𝑥  =  𝑦 ,   1  ,   0  ) ) ) | 
						
							| 25 |  | fveq2 | ⊢ ( ℎ  =  𝑊  →  ( ocv ‘ ℎ )  =  ( ocv ‘ 𝑊 ) ) | 
						
							| 26 | 25 6 | eqtr4di | ⊢ ( ℎ  =  𝑊  →  ( ocv ‘ ℎ )  =   ⊥  ) | 
						
							| 27 | 26 | fveq1d | ⊢ ( ℎ  =  𝑊  →  ( ( ocv ‘ ℎ ) ‘ 𝑏 )  =  (  ⊥  ‘ 𝑏 ) ) | 
						
							| 28 |  | fveq2 | ⊢ ( ℎ  =  𝑊  →  ( 0g ‘ ℎ )  =  ( 0g ‘ 𝑊 ) ) | 
						
							| 29 | 28 7 | eqtr4di | ⊢ ( ℎ  =  𝑊  →  ( 0g ‘ ℎ )  =  𝑌 ) | 
						
							| 30 | 29 | sneqd | ⊢ ( ℎ  =  𝑊  →  { ( 0g ‘ ℎ ) }  =  { 𝑌 } ) | 
						
							| 31 | 27 30 | eqeq12d | ⊢ ( ℎ  =  𝑊  →  ( ( ( ocv ‘ ℎ ) ‘ 𝑏 )  =  { ( 0g ‘ ℎ ) }  ↔  (  ⊥  ‘ 𝑏 )  =  { 𝑌 } ) ) | 
						
							| 32 | 24 31 | anbi12d | ⊢ ( ℎ  =  𝑊  →  ( ( ∀ 𝑥  ∈  𝑏 ∀ 𝑦  ∈  𝑏 ( 𝑥 ( ·𝑖 ‘ ℎ ) 𝑦 )  =  if ( 𝑥  =  𝑦 ,  ( 1r ‘ ( Scalar ‘ ℎ ) ) ,  ( 0g ‘ ( Scalar ‘ ℎ ) ) )  ∧  ( ( ocv ‘ ℎ ) ‘ 𝑏 )  =  { ( 0g ‘ ℎ ) } )  ↔  ( ∀ 𝑥  ∈  𝑏 ∀ 𝑦  ∈  𝑏 ( 𝑥  ,  𝑦 )  =  if ( 𝑥  =  𝑦 ,   1  ,   0  )  ∧  (  ⊥  ‘ 𝑏 )  =  { 𝑌 } ) ) ) | 
						
							| 33 | 12 32 | rabeqbidv | ⊢ ( ℎ  =  𝑊  →  { 𝑏  ∈  𝒫  ( Base ‘ ℎ )  ∣  ( ∀ 𝑥  ∈  𝑏 ∀ 𝑦  ∈  𝑏 ( 𝑥 ( ·𝑖 ‘ ℎ ) 𝑦 )  =  if ( 𝑥  =  𝑦 ,  ( 1r ‘ ( Scalar ‘ ℎ ) ) ,  ( 0g ‘ ( Scalar ‘ ℎ ) ) )  ∧  ( ( ocv ‘ ℎ ) ‘ 𝑏 )  =  { ( 0g ‘ ℎ ) } ) }  =  { 𝑏  ∈  𝒫  𝑉  ∣  ( ∀ 𝑥  ∈  𝑏 ∀ 𝑦  ∈  𝑏 ( 𝑥  ,  𝑦 )  =  if ( 𝑥  =  𝑦 ,   1  ,   0  )  ∧  (  ⊥  ‘ 𝑏 )  =  { 𝑌 } ) } ) | 
						
							| 34 | 1 | fvexi | ⊢ 𝑉  ∈  V | 
						
							| 35 | 34 | pwex | ⊢ 𝒫  𝑉  ∈  V | 
						
							| 36 | 35 | rabex | ⊢ { 𝑏  ∈  𝒫  𝑉  ∣  ( ∀ 𝑥  ∈  𝑏 ∀ 𝑦  ∈  𝑏 ( 𝑥  ,  𝑦 )  =  if ( 𝑥  =  𝑦 ,   1  ,   0  )  ∧  (  ⊥  ‘ 𝑏 )  =  { 𝑌 } ) }  ∈  V | 
						
							| 37 | 33 8 36 | fvmpt | ⊢ ( 𝑊  ∈  PreHil  →  ( OBasis ‘ 𝑊 )  =  { 𝑏  ∈  𝒫  𝑉  ∣  ( ∀ 𝑥  ∈  𝑏 ∀ 𝑦  ∈  𝑏 ( 𝑥  ,  𝑦 )  =  if ( 𝑥  =  𝑦 ,   1  ,   0  )  ∧  (  ⊥  ‘ 𝑏 )  =  { 𝑌 } ) } ) | 
						
							| 38 | 37 | eleq2d | ⊢ ( 𝑊  ∈  PreHil  →  ( 𝐵  ∈  ( OBasis ‘ 𝑊 )  ↔  𝐵  ∈  { 𝑏  ∈  𝒫  𝑉  ∣  ( ∀ 𝑥  ∈  𝑏 ∀ 𝑦  ∈  𝑏 ( 𝑥  ,  𝑦 )  =  if ( 𝑥  =  𝑦 ,   1  ,   0  )  ∧  (  ⊥  ‘ 𝑏 )  =  { 𝑌 } ) } ) ) | 
						
							| 39 |  | raleq | ⊢ ( 𝑏  =  𝐵  →  ( ∀ 𝑦  ∈  𝑏 ( 𝑥  ,  𝑦 )  =  if ( 𝑥  =  𝑦 ,   1  ,   0  )  ↔  ∀ 𝑦  ∈  𝐵 ( 𝑥  ,  𝑦 )  =  if ( 𝑥  =  𝑦 ,   1  ,   0  ) ) ) | 
						
							| 40 | 39 | raleqbi1dv | ⊢ ( 𝑏  =  𝐵  →  ( ∀ 𝑥  ∈  𝑏 ∀ 𝑦  ∈  𝑏 ( 𝑥  ,  𝑦 )  =  if ( 𝑥  =  𝑦 ,   1  ,   0  )  ↔  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( 𝑥  ,  𝑦 )  =  if ( 𝑥  =  𝑦 ,   1  ,   0  ) ) ) | 
						
							| 41 |  | fveqeq2 | ⊢ ( 𝑏  =  𝐵  →  ( (  ⊥  ‘ 𝑏 )  =  { 𝑌 }  ↔  (  ⊥  ‘ 𝐵 )  =  { 𝑌 } ) ) | 
						
							| 42 | 40 41 | anbi12d | ⊢ ( 𝑏  =  𝐵  →  ( ( ∀ 𝑥  ∈  𝑏 ∀ 𝑦  ∈  𝑏 ( 𝑥  ,  𝑦 )  =  if ( 𝑥  =  𝑦 ,   1  ,   0  )  ∧  (  ⊥  ‘ 𝑏 )  =  { 𝑌 } )  ↔  ( ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( 𝑥  ,  𝑦 )  =  if ( 𝑥  =  𝑦 ,   1  ,   0  )  ∧  (  ⊥  ‘ 𝐵 )  =  { 𝑌 } ) ) ) | 
						
							| 43 | 42 | elrab | ⊢ ( 𝐵  ∈  { 𝑏  ∈  𝒫  𝑉  ∣  ( ∀ 𝑥  ∈  𝑏 ∀ 𝑦  ∈  𝑏 ( 𝑥  ,  𝑦 )  =  if ( 𝑥  =  𝑦 ,   1  ,   0  )  ∧  (  ⊥  ‘ 𝑏 )  =  { 𝑌 } ) }  ↔  ( 𝐵  ∈  𝒫  𝑉  ∧  ( ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( 𝑥  ,  𝑦 )  =  if ( 𝑥  =  𝑦 ,   1  ,   0  )  ∧  (  ⊥  ‘ 𝐵 )  =  { 𝑌 } ) ) ) | 
						
							| 44 | 34 | elpw2 | ⊢ ( 𝐵  ∈  𝒫  𝑉  ↔  𝐵  ⊆  𝑉 ) | 
						
							| 45 | 44 | anbi1i | ⊢ ( ( 𝐵  ∈  𝒫  𝑉  ∧  ( ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( 𝑥  ,  𝑦 )  =  if ( 𝑥  =  𝑦 ,   1  ,   0  )  ∧  (  ⊥  ‘ 𝐵 )  =  { 𝑌 } ) )  ↔  ( 𝐵  ⊆  𝑉  ∧  ( ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( 𝑥  ,  𝑦 )  =  if ( 𝑥  =  𝑦 ,   1  ,   0  )  ∧  (  ⊥  ‘ 𝐵 )  =  { 𝑌 } ) ) ) | 
						
							| 46 | 43 45 | bitri | ⊢ ( 𝐵  ∈  { 𝑏  ∈  𝒫  𝑉  ∣  ( ∀ 𝑥  ∈  𝑏 ∀ 𝑦  ∈  𝑏 ( 𝑥  ,  𝑦 )  =  if ( 𝑥  =  𝑦 ,   1  ,   0  )  ∧  (  ⊥  ‘ 𝑏 )  =  { 𝑌 } ) }  ↔  ( 𝐵  ⊆  𝑉  ∧  ( ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( 𝑥  ,  𝑦 )  =  if ( 𝑥  =  𝑦 ,   1  ,   0  )  ∧  (  ⊥  ‘ 𝐵 )  =  { 𝑌 } ) ) ) | 
						
							| 47 | 38 46 | bitrdi | ⊢ ( 𝑊  ∈  PreHil  →  ( 𝐵  ∈  ( OBasis ‘ 𝑊 )  ↔  ( 𝐵  ⊆  𝑉  ∧  ( ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( 𝑥  ,  𝑦 )  =  if ( 𝑥  =  𝑦 ,   1  ,   0  )  ∧  (  ⊥  ‘ 𝐵 )  =  { 𝑌 } ) ) ) ) | 
						
							| 48 | 9 47 | biadanii | ⊢ ( 𝐵  ∈  ( OBasis ‘ 𝑊 )  ↔  ( 𝑊  ∈  PreHil  ∧  ( 𝐵  ⊆  𝑉  ∧  ( ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( 𝑥  ,  𝑦 )  =  if ( 𝑥  =  𝑦 ,   1  ,   0  )  ∧  (  ⊥  ‘ 𝐵 )  =  { 𝑌 } ) ) ) ) | 
						
							| 49 |  | 3anass | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝐵  ⊆  𝑉  ∧  ( ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( 𝑥  ,  𝑦 )  =  if ( 𝑥  =  𝑦 ,   1  ,   0  )  ∧  (  ⊥  ‘ 𝐵 )  =  { 𝑌 } ) )  ↔  ( 𝑊  ∈  PreHil  ∧  ( 𝐵  ⊆  𝑉  ∧  ( ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( 𝑥  ,  𝑦 )  =  if ( 𝑥  =  𝑦 ,   1  ,   0  )  ∧  (  ⊥  ‘ 𝐵 )  =  { 𝑌 } ) ) ) ) | 
						
							| 50 | 48 49 | bitr4i | ⊢ ( 𝐵  ∈  ( OBasis ‘ 𝑊 )  ↔  ( 𝑊  ∈  PreHil  ∧  𝐵  ⊆  𝑉  ∧  ( ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( 𝑥  ,  𝑦 )  =  if ( 𝑥  =  𝑦 ,   1  ,   0  )  ∧  (  ⊥  ‘ 𝐵 )  =  { 𝑌 } ) ) ) |