Step |
Hyp |
Ref |
Expression |
1 |
|
isobs.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
2 |
|
isobs.h |
⊢ , = ( ·𝑖 ‘ 𝑊 ) |
3 |
|
isobs.f |
⊢ 𝐹 = ( Scalar ‘ 𝑊 ) |
4 |
|
isobs.u |
⊢ 1 = ( 1r ‘ 𝐹 ) |
5 |
|
isobs.z |
⊢ 0 = ( 0g ‘ 𝐹 ) |
6 |
|
isobs.o |
⊢ ⊥ = ( ocv ‘ 𝑊 ) |
7 |
|
isobs.y |
⊢ 𝑌 = ( 0g ‘ 𝑊 ) |
8 |
|
df-obs |
⊢ OBasis = ( ℎ ∈ PreHil ↦ { 𝑏 ∈ 𝒫 ( Base ‘ ℎ ) ∣ ( ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ( 𝑥 ( ·𝑖 ‘ ℎ ) 𝑦 ) = if ( 𝑥 = 𝑦 , ( 1r ‘ ( Scalar ‘ ℎ ) ) , ( 0g ‘ ( Scalar ‘ ℎ ) ) ) ∧ ( ( ocv ‘ ℎ ) ‘ 𝑏 ) = { ( 0g ‘ ℎ ) } ) } ) |
9 |
8
|
mptrcl |
⊢ ( 𝐵 ∈ ( OBasis ‘ 𝑊 ) → 𝑊 ∈ PreHil ) |
10 |
|
fveq2 |
⊢ ( ℎ = 𝑊 → ( Base ‘ ℎ ) = ( Base ‘ 𝑊 ) ) |
11 |
10 1
|
eqtr4di |
⊢ ( ℎ = 𝑊 → ( Base ‘ ℎ ) = 𝑉 ) |
12 |
11
|
pweqd |
⊢ ( ℎ = 𝑊 → 𝒫 ( Base ‘ ℎ ) = 𝒫 𝑉 ) |
13 |
|
fveq2 |
⊢ ( ℎ = 𝑊 → ( ·𝑖 ‘ ℎ ) = ( ·𝑖 ‘ 𝑊 ) ) |
14 |
13 2
|
eqtr4di |
⊢ ( ℎ = 𝑊 → ( ·𝑖 ‘ ℎ ) = , ) |
15 |
14
|
oveqd |
⊢ ( ℎ = 𝑊 → ( 𝑥 ( ·𝑖 ‘ ℎ ) 𝑦 ) = ( 𝑥 , 𝑦 ) ) |
16 |
|
fveq2 |
⊢ ( ℎ = 𝑊 → ( Scalar ‘ ℎ ) = ( Scalar ‘ 𝑊 ) ) |
17 |
16 3
|
eqtr4di |
⊢ ( ℎ = 𝑊 → ( Scalar ‘ ℎ ) = 𝐹 ) |
18 |
17
|
fveq2d |
⊢ ( ℎ = 𝑊 → ( 1r ‘ ( Scalar ‘ ℎ ) ) = ( 1r ‘ 𝐹 ) ) |
19 |
18 4
|
eqtr4di |
⊢ ( ℎ = 𝑊 → ( 1r ‘ ( Scalar ‘ ℎ ) ) = 1 ) |
20 |
17
|
fveq2d |
⊢ ( ℎ = 𝑊 → ( 0g ‘ ( Scalar ‘ ℎ ) ) = ( 0g ‘ 𝐹 ) ) |
21 |
20 5
|
eqtr4di |
⊢ ( ℎ = 𝑊 → ( 0g ‘ ( Scalar ‘ ℎ ) ) = 0 ) |
22 |
19 21
|
ifeq12d |
⊢ ( ℎ = 𝑊 → if ( 𝑥 = 𝑦 , ( 1r ‘ ( Scalar ‘ ℎ ) ) , ( 0g ‘ ( Scalar ‘ ℎ ) ) ) = if ( 𝑥 = 𝑦 , 1 , 0 ) ) |
23 |
15 22
|
eqeq12d |
⊢ ( ℎ = 𝑊 → ( ( 𝑥 ( ·𝑖 ‘ ℎ ) 𝑦 ) = if ( 𝑥 = 𝑦 , ( 1r ‘ ( Scalar ‘ ℎ ) ) , ( 0g ‘ ( Scalar ‘ ℎ ) ) ) ↔ ( 𝑥 , 𝑦 ) = if ( 𝑥 = 𝑦 , 1 , 0 ) ) ) |
24 |
23
|
2ralbidv |
⊢ ( ℎ = 𝑊 → ( ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ( 𝑥 ( ·𝑖 ‘ ℎ ) 𝑦 ) = if ( 𝑥 = 𝑦 , ( 1r ‘ ( Scalar ‘ ℎ ) ) , ( 0g ‘ ( Scalar ‘ ℎ ) ) ) ↔ ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ( 𝑥 , 𝑦 ) = if ( 𝑥 = 𝑦 , 1 , 0 ) ) ) |
25 |
|
fveq2 |
⊢ ( ℎ = 𝑊 → ( ocv ‘ ℎ ) = ( ocv ‘ 𝑊 ) ) |
26 |
25 6
|
eqtr4di |
⊢ ( ℎ = 𝑊 → ( ocv ‘ ℎ ) = ⊥ ) |
27 |
26
|
fveq1d |
⊢ ( ℎ = 𝑊 → ( ( ocv ‘ ℎ ) ‘ 𝑏 ) = ( ⊥ ‘ 𝑏 ) ) |
28 |
|
fveq2 |
⊢ ( ℎ = 𝑊 → ( 0g ‘ ℎ ) = ( 0g ‘ 𝑊 ) ) |
29 |
28 7
|
eqtr4di |
⊢ ( ℎ = 𝑊 → ( 0g ‘ ℎ ) = 𝑌 ) |
30 |
29
|
sneqd |
⊢ ( ℎ = 𝑊 → { ( 0g ‘ ℎ ) } = { 𝑌 } ) |
31 |
27 30
|
eqeq12d |
⊢ ( ℎ = 𝑊 → ( ( ( ocv ‘ ℎ ) ‘ 𝑏 ) = { ( 0g ‘ ℎ ) } ↔ ( ⊥ ‘ 𝑏 ) = { 𝑌 } ) ) |
32 |
24 31
|
anbi12d |
⊢ ( ℎ = 𝑊 → ( ( ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ( 𝑥 ( ·𝑖 ‘ ℎ ) 𝑦 ) = if ( 𝑥 = 𝑦 , ( 1r ‘ ( Scalar ‘ ℎ ) ) , ( 0g ‘ ( Scalar ‘ ℎ ) ) ) ∧ ( ( ocv ‘ ℎ ) ‘ 𝑏 ) = { ( 0g ‘ ℎ ) } ) ↔ ( ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ( 𝑥 , 𝑦 ) = if ( 𝑥 = 𝑦 , 1 , 0 ) ∧ ( ⊥ ‘ 𝑏 ) = { 𝑌 } ) ) ) |
33 |
12 32
|
rabeqbidv |
⊢ ( ℎ = 𝑊 → { 𝑏 ∈ 𝒫 ( Base ‘ ℎ ) ∣ ( ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ( 𝑥 ( ·𝑖 ‘ ℎ ) 𝑦 ) = if ( 𝑥 = 𝑦 , ( 1r ‘ ( Scalar ‘ ℎ ) ) , ( 0g ‘ ( Scalar ‘ ℎ ) ) ) ∧ ( ( ocv ‘ ℎ ) ‘ 𝑏 ) = { ( 0g ‘ ℎ ) } ) } = { 𝑏 ∈ 𝒫 𝑉 ∣ ( ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ( 𝑥 , 𝑦 ) = if ( 𝑥 = 𝑦 , 1 , 0 ) ∧ ( ⊥ ‘ 𝑏 ) = { 𝑌 } ) } ) |
34 |
1
|
fvexi |
⊢ 𝑉 ∈ V |
35 |
34
|
pwex |
⊢ 𝒫 𝑉 ∈ V |
36 |
35
|
rabex |
⊢ { 𝑏 ∈ 𝒫 𝑉 ∣ ( ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ( 𝑥 , 𝑦 ) = if ( 𝑥 = 𝑦 , 1 , 0 ) ∧ ( ⊥ ‘ 𝑏 ) = { 𝑌 } ) } ∈ V |
37 |
33 8 36
|
fvmpt |
⊢ ( 𝑊 ∈ PreHil → ( OBasis ‘ 𝑊 ) = { 𝑏 ∈ 𝒫 𝑉 ∣ ( ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ( 𝑥 , 𝑦 ) = if ( 𝑥 = 𝑦 , 1 , 0 ) ∧ ( ⊥ ‘ 𝑏 ) = { 𝑌 } ) } ) |
38 |
37
|
eleq2d |
⊢ ( 𝑊 ∈ PreHil → ( 𝐵 ∈ ( OBasis ‘ 𝑊 ) ↔ 𝐵 ∈ { 𝑏 ∈ 𝒫 𝑉 ∣ ( ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ( 𝑥 , 𝑦 ) = if ( 𝑥 = 𝑦 , 1 , 0 ) ∧ ( ⊥ ‘ 𝑏 ) = { 𝑌 } ) } ) ) |
39 |
|
raleq |
⊢ ( 𝑏 = 𝐵 → ( ∀ 𝑦 ∈ 𝑏 ( 𝑥 , 𝑦 ) = if ( 𝑥 = 𝑦 , 1 , 0 ) ↔ ∀ 𝑦 ∈ 𝐵 ( 𝑥 , 𝑦 ) = if ( 𝑥 = 𝑦 , 1 , 0 ) ) ) |
40 |
39
|
raleqbi1dv |
⊢ ( 𝑏 = 𝐵 → ( ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ( 𝑥 , 𝑦 ) = if ( 𝑥 = 𝑦 , 1 , 0 ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 , 𝑦 ) = if ( 𝑥 = 𝑦 , 1 , 0 ) ) ) |
41 |
|
fveqeq2 |
⊢ ( 𝑏 = 𝐵 → ( ( ⊥ ‘ 𝑏 ) = { 𝑌 } ↔ ( ⊥ ‘ 𝐵 ) = { 𝑌 } ) ) |
42 |
40 41
|
anbi12d |
⊢ ( 𝑏 = 𝐵 → ( ( ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ( 𝑥 , 𝑦 ) = if ( 𝑥 = 𝑦 , 1 , 0 ) ∧ ( ⊥ ‘ 𝑏 ) = { 𝑌 } ) ↔ ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 , 𝑦 ) = if ( 𝑥 = 𝑦 , 1 , 0 ) ∧ ( ⊥ ‘ 𝐵 ) = { 𝑌 } ) ) ) |
43 |
42
|
elrab |
⊢ ( 𝐵 ∈ { 𝑏 ∈ 𝒫 𝑉 ∣ ( ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ( 𝑥 , 𝑦 ) = if ( 𝑥 = 𝑦 , 1 , 0 ) ∧ ( ⊥ ‘ 𝑏 ) = { 𝑌 } ) } ↔ ( 𝐵 ∈ 𝒫 𝑉 ∧ ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 , 𝑦 ) = if ( 𝑥 = 𝑦 , 1 , 0 ) ∧ ( ⊥ ‘ 𝐵 ) = { 𝑌 } ) ) ) |
44 |
34
|
elpw2 |
⊢ ( 𝐵 ∈ 𝒫 𝑉 ↔ 𝐵 ⊆ 𝑉 ) |
45 |
44
|
anbi1i |
⊢ ( ( 𝐵 ∈ 𝒫 𝑉 ∧ ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 , 𝑦 ) = if ( 𝑥 = 𝑦 , 1 , 0 ) ∧ ( ⊥ ‘ 𝐵 ) = { 𝑌 } ) ) ↔ ( 𝐵 ⊆ 𝑉 ∧ ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 , 𝑦 ) = if ( 𝑥 = 𝑦 , 1 , 0 ) ∧ ( ⊥ ‘ 𝐵 ) = { 𝑌 } ) ) ) |
46 |
43 45
|
bitri |
⊢ ( 𝐵 ∈ { 𝑏 ∈ 𝒫 𝑉 ∣ ( ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ( 𝑥 , 𝑦 ) = if ( 𝑥 = 𝑦 , 1 , 0 ) ∧ ( ⊥ ‘ 𝑏 ) = { 𝑌 } ) } ↔ ( 𝐵 ⊆ 𝑉 ∧ ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 , 𝑦 ) = if ( 𝑥 = 𝑦 , 1 , 0 ) ∧ ( ⊥ ‘ 𝐵 ) = { 𝑌 } ) ) ) |
47 |
38 46
|
bitrdi |
⊢ ( 𝑊 ∈ PreHil → ( 𝐵 ∈ ( OBasis ‘ 𝑊 ) ↔ ( 𝐵 ⊆ 𝑉 ∧ ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 , 𝑦 ) = if ( 𝑥 = 𝑦 , 1 , 0 ) ∧ ( ⊥ ‘ 𝐵 ) = { 𝑌 } ) ) ) ) |
48 |
9 47
|
biadanii |
⊢ ( 𝐵 ∈ ( OBasis ‘ 𝑊 ) ↔ ( 𝑊 ∈ PreHil ∧ ( 𝐵 ⊆ 𝑉 ∧ ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 , 𝑦 ) = if ( 𝑥 = 𝑦 , 1 , 0 ) ∧ ( ⊥ ‘ 𝐵 ) = { 𝑌 } ) ) ) ) |
49 |
|
3anass |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝐵 ⊆ 𝑉 ∧ ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 , 𝑦 ) = if ( 𝑥 = 𝑦 , 1 , 0 ) ∧ ( ⊥ ‘ 𝐵 ) = { 𝑌 } ) ) ↔ ( 𝑊 ∈ PreHil ∧ ( 𝐵 ⊆ 𝑉 ∧ ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 , 𝑦 ) = if ( 𝑥 = 𝑦 , 1 , 0 ) ∧ ( ⊥ ‘ 𝐵 ) = { 𝑌 } ) ) ) ) |
50 |
48 49
|
bitr4i |
⊢ ( 𝐵 ∈ ( OBasis ‘ 𝑊 ) ↔ ( 𝑊 ∈ PreHil ∧ 𝐵 ⊆ 𝑉 ∧ ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 , 𝑦 ) = if ( 𝑥 = 𝑦 , 1 , 0 ) ∧ ( ⊥ ‘ 𝐵 ) = { 𝑌 } ) ) ) |