| Step | Hyp | Ref | Expression | 
						
							| 1 |  | isobs.v | ⊢ 𝑉  =  ( Base ‘ 𝑊 ) | 
						
							| 2 |  | isobs.h | ⊢  ,   =  ( ·𝑖 ‘ 𝑊 ) | 
						
							| 3 |  | isobs.f | ⊢ 𝐹  =  ( Scalar ‘ 𝑊 ) | 
						
							| 4 |  | isobs.u | ⊢  1   =  ( 1r ‘ 𝐹 ) | 
						
							| 5 |  | isobs.z | ⊢  0   =  ( 0g ‘ 𝐹 ) | 
						
							| 6 |  | eqid | ⊢ ( ocv ‘ 𝑊 )  =  ( ocv ‘ 𝑊 ) | 
						
							| 7 |  | eqid | ⊢ ( 0g ‘ 𝑊 )  =  ( 0g ‘ 𝑊 ) | 
						
							| 8 | 1 2 3 4 5 6 7 | isobs | ⊢ ( 𝐵  ∈  ( OBasis ‘ 𝑊 )  ↔  ( 𝑊  ∈  PreHil  ∧  𝐵  ⊆  𝑉  ∧  ( ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( 𝑥  ,  𝑦 )  =  if ( 𝑥  =  𝑦 ,   1  ,   0  )  ∧  ( ( ocv ‘ 𝑊 ) ‘ 𝐵 )  =  { ( 0g ‘ 𝑊 ) } ) ) ) | 
						
							| 9 | 8 | simp3bi | ⊢ ( 𝐵  ∈  ( OBasis ‘ 𝑊 )  →  ( ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( 𝑥  ,  𝑦 )  =  if ( 𝑥  =  𝑦 ,   1  ,   0  )  ∧  ( ( ocv ‘ 𝑊 ) ‘ 𝐵 )  =  { ( 0g ‘ 𝑊 ) } ) ) | 
						
							| 10 | 9 | simpld | ⊢ ( 𝐵  ∈  ( OBasis ‘ 𝑊 )  →  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( 𝑥  ,  𝑦 )  =  if ( 𝑥  =  𝑦 ,   1  ,   0  ) ) | 
						
							| 11 |  | oveq1 | ⊢ ( 𝑥  =  𝑃  →  ( 𝑥  ,  𝑦 )  =  ( 𝑃  ,  𝑦 ) ) | 
						
							| 12 |  | eqeq1 | ⊢ ( 𝑥  =  𝑃  →  ( 𝑥  =  𝑦  ↔  𝑃  =  𝑦 ) ) | 
						
							| 13 | 12 | ifbid | ⊢ ( 𝑥  =  𝑃  →  if ( 𝑥  =  𝑦 ,   1  ,   0  )  =  if ( 𝑃  =  𝑦 ,   1  ,   0  ) ) | 
						
							| 14 | 11 13 | eqeq12d | ⊢ ( 𝑥  =  𝑃  →  ( ( 𝑥  ,  𝑦 )  =  if ( 𝑥  =  𝑦 ,   1  ,   0  )  ↔  ( 𝑃  ,  𝑦 )  =  if ( 𝑃  =  𝑦 ,   1  ,   0  ) ) ) | 
						
							| 15 |  | oveq2 | ⊢ ( 𝑦  =  𝑄  →  ( 𝑃  ,  𝑦 )  =  ( 𝑃  ,  𝑄 ) ) | 
						
							| 16 |  | eqeq2 | ⊢ ( 𝑦  =  𝑄  →  ( 𝑃  =  𝑦  ↔  𝑃  =  𝑄 ) ) | 
						
							| 17 | 16 | ifbid | ⊢ ( 𝑦  =  𝑄  →  if ( 𝑃  =  𝑦 ,   1  ,   0  )  =  if ( 𝑃  =  𝑄 ,   1  ,   0  ) ) | 
						
							| 18 | 15 17 | eqeq12d | ⊢ ( 𝑦  =  𝑄  →  ( ( 𝑃  ,  𝑦 )  =  if ( 𝑃  =  𝑦 ,   1  ,   0  )  ↔  ( 𝑃  ,  𝑄 )  =  if ( 𝑃  =  𝑄 ,   1  ,   0  ) ) ) | 
						
							| 19 | 14 18 | rspc2v | ⊢ ( ( 𝑃  ∈  𝐵  ∧  𝑄  ∈  𝐵 )  →  ( ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( 𝑥  ,  𝑦 )  =  if ( 𝑥  =  𝑦 ,   1  ,   0  )  →  ( 𝑃  ,  𝑄 )  =  if ( 𝑃  =  𝑄 ,   1  ,   0  ) ) ) | 
						
							| 20 | 10 19 | syl5com | ⊢ ( 𝐵  ∈  ( OBasis ‘ 𝑊 )  →  ( ( 𝑃  ∈  𝐵  ∧  𝑄  ∈  𝐵 )  →  ( 𝑃  ,  𝑄 )  =  if ( 𝑃  =  𝑄 ,   1  ,   0  ) ) ) | 
						
							| 21 | 20 | 3impib | ⊢ ( ( 𝐵  ∈  ( OBasis ‘ 𝑊 )  ∧  𝑃  ∈  𝐵  ∧  𝑄  ∈  𝐵 )  →  ( 𝑃  ,  𝑄 )  =  if ( 𝑃  =  𝑄 ,   1  ,   0  ) ) |