| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isobs.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
| 2 |
|
isobs.h |
⊢ , = ( ·𝑖 ‘ 𝑊 ) |
| 3 |
|
isobs.f |
⊢ 𝐹 = ( Scalar ‘ 𝑊 ) |
| 4 |
|
isobs.u |
⊢ 1 = ( 1r ‘ 𝐹 ) |
| 5 |
|
isobs.z |
⊢ 0 = ( 0g ‘ 𝐹 ) |
| 6 |
|
eqid |
⊢ ( ocv ‘ 𝑊 ) = ( ocv ‘ 𝑊 ) |
| 7 |
|
eqid |
⊢ ( 0g ‘ 𝑊 ) = ( 0g ‘ 𝑊 ) |
| 8 |
1 2 3 4 5 6 7
|
isobs |
⊢ ( 𝐵 ∈ ( OBasis ‘ 𝑊 ) ↔ ( 𝑊 ∈ PreHil ∧ 𝐵 ⊆ 𝑉 ∧ ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 , 𝑦 ) = if ( 𝑥 = 𝑦 , 1 , 0 ) ∧ ( ( ocv ‘ 𝑊 ) ‘ 𝐵 ) = { ( 0g ‘ 𝑊 ) } ) ) ) |
| 9 |
8
|
simp3bi |
⊢ ( 𝐵 ∈ ( OBasis ‘ 𝑊 ) → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 , 𝑦 ) = if ( 𝑥 = 𝑦 , 1 , 0 ) ∧ ( ( ocv ‘ 𝑊 ) ‘ 𝐵 ) = { ( 0g ‘ 𝑊 ) } ) ) |
| 10 |
9
|
simpld |
⊢ ( 𝐵 ∈ ( OBasis ‘ 𝑊 ) → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 , 𝑦 ) = if ( 𝑥 = 𝑦 , 1 , 0 ) ) |
| 11 |
|
oveq1 |
⊢ ( 𝑥 = 𝑃 → ( 𝑥 , 𝑦 ) = ( 𝑃 , 𝑦 ) ) |
| 12 |
|
eqeq1 |
⊢ ( 𝑥 = 𝑃 → ( 𝑥 = 𝑦 ↔ 𝑃 = 𝑦 ) ) |
| 13 |
12
|
ifbid |
⊢ ( 𝑥 = 𝑃 → if ( 𝑥 = 𝑦 , 1 , 0 ) = if ( 𝑃 = 𝑦 , 1 , 0 ) ) |
| 14 |
11 13
|
eqeq12d |
⊢ ( 𝑥 = 𝑃 → ( ( 𝑥 , 𝑦 ) = if ( 𝑥 = 𝑦 , 1 , 0 ) ↔ ( 𝑃 , 𝑦 ) = if ( 𝑃 = 𝑦 , 1 , 0 ) ) ) |
| 15 |
|
oveq2 |
⊢ ( 𝑦 = 𝑄 → ( 𝑃 , 𝑦 ) = ( 𝑃 , 𝑄 ) ) |
| 16 |
|
eqeq2 |
⊢ ( 𝑦 = 𝑄 → ( 𝑃 = 𝑦 ↔ 𝑃 = 𝑄 ) ) |
| 17 |
16
|
ifbid |
⊢ ( 𝑦 = 𝑄 → if ( 𝑃 = 𝑦 , 1 , 0 ) = if ( 𝑃 = 𝑄 , 1 , 0 ) ) |
| 18 |
15 17
|
eqeq12d |
⊢ ( 𝑦 = 𝑄 → ( ( 𝑃 , 𝑦 ) = if ( 𝑃 = 𝑦 , 1 , 0 ) ↔ ( 𝑃 , 𝑄 ) = if ( 𝑃 = 𝑄 , 1 , 0 ) ) ) |
| 19 |
14 18
|
rspc2v |
⊢ ( ( 𝑃 ∈ 𝐵 ∧ 𝑄 ∈ 𝐵 ) → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 , 𝑦 ) = if ( 𝑥 = 𝑦 , 1 , 0 ) → ( 𝑃 , 𝑄 ) = if ( 𝑃 = 𝑄 , 1 , 0 ) ) ) |
| 20 |
10 19
|
syl5com |
⊢ ( 𝐵 ∈ ( OBasis ‘ 𝑊 ) → ( ( 𝑃 ∈ 𝐵 ∧ 𝑄 ∈ 𝐵 ) → ( 𝑃 , 𝑄 ) = if ( 𝑃 = 𝑄 , 1 , 0 ) ) ) |
| 21 |
20
|
3impib |
⊢ ( ( 𝐵 ∈ ( OBasis ‘ 𝑊 ) ∧ 𝑃 ∈ 𝐵 ∧ 𝑄 ∈ 𝐵 ) → ( 𝑃 , 𝑄 ) = if ( 𝑃 = 𝑄 , 1 , 0 ) ) |