Step |
Hyp |
Ref |
Expression |
1 |
|
isobs.v |
|- V = ( Base ` W ) |
2 |
|
isobs.h |
|- ., = ( .i ` W ) |
3 |
|
isobs.f |
|- F = ( Scalar ` W ) |
4 |
|
isobs.u |
|- .1. = ( 1r ` F ) |
5 |
|
isobs.z |
|- .0. = ( 0g ` F ) |
6 |
|
eqid |
|- ( ocv ` W ) = ( ocv ` W ) |
7 |
|
eqid |
|- ( 0g ` W ) = ( 0g ` W ) |
8 |
1 2 3 4 5 6 7
|
isobs |
|- ( B e. ( OBasis ` W ) <-> ( W e. PreHil /\ B C_ V /\ ( A. x e. B A. y e. B ( x ., y ) = if ( x = y , .1. , .0. ) /\ ( ( ocv ` W ) ` B ) = { ( 0g ` W ) } ) ) ) |
9 |
8
|
simp3bi |
|- ( B e. ( OBasis ` W ) -> ( A. x e. B A. y e. B ( x ., y ) = if ( x = y , .1. , .0. ) /\ ( ( ocv ` W ) ` B ) = { ( 0g ` W ) } ) ) |
10 |
9
|
simpld |
|- ( B e. ( OBasis ` W ) -> A. x e. B A. y e. B ( x ., y ) = if ( x = y , .1. , .0. ) ) |
11 |
|
oveq1 |
|- ( x = P -> ( x ., y ) = ( P ., y ) ) |
12 |
|
eqeq1 |
|- ( x = P -> ( x = y <-> P = y ) ) |
13 |
12
|
ifbid |
|- ( x = P -> if ( x = y , .1. , .0. ) = if ( P = y , .1. , .0. ) ) |
14 |
11 13
|
eqeq12d |
|- ( x = P -> ( ( x ., y ) = if ( x = y , .1. , .0. ) <-> ( P ., y ) = if ( P = y , .1. , .0. ) ) ) |
15 |
|
oveq2 |
|- ( y = Q -> ( P ., y ) = ( P ., Q ) ) |
16 |
|
eqeq2 |
|- ( y = Q -> ( P = y <-> P = Q ) ) |
17 |
16
|
ifbid |
|- ( y = Q -> if ( P = y , .1. , .0. ) = if ( P = Q , .1. , .0. ) ) |
18 |
15 17
|
eqeq12d |
|- ( y = Q -> ( ( P ., y ) = if ( P = y , .1. , .0. ) <-> ( P ., Q ) = if ( P = Q , .1. , .0. ) ) ) |
19 |
14 18
|
rspc2v |
|- ( ( P e. B /\ Q e. B ) -> ( A. x e. B A. y e. B ( x ., y ) = if ( x = y , .1. , .0. ) -> ( P ., Q ) = if ( P = Q , .1. , .0. ) ) ) |
20 |
10 19
|
syl5com |
|- ( B e. ( OBasis ` W ) -> ( ( P e. B /\ Q e. B ) -> ( P ., Q ) = if ( P = Q , .1. , .0. ) ) ) |
21 |
20
|
3impib |
|- ( ( B e. ( OBasis ` W ) /\ P e. B /\ Q e. B ) -> ( P ., Q ) = if ( P = Q , .1. , .0. ) ) |