| Step | Hyp | Ref | Expression | 
						
							| 1 |  | isobs.v |  |-  V = ( Base ` W ) | 
						
							| 2 |  | isobs.h |  |-  ., = ( .i ` W ) | 
						
							| 3 |  | isobs.f |  |-  F = ( Scalar ` W ) | 
						
							| 4 |  | isobs.u |  |-  .1. = ( 1r ` F ) | 
						
							| 5 |  | isobs.z |  |-  .0. = ( 0g ` F ) | 
						
							| 6 |  | eqid |  |-  ( ocv ` W ) = ( ocv ` W ) | 
						
							| 7 |  | eqid |  |-  ( 0g ` W ) = ( 0g ` W ) | 
						
							| 8 | 1 2 3 4 5 6 7 | isobs |  |-  ( B e. ( OBasis ` W ) <-> ( W e. PreHil /\ B C_ V /\ ( A. x e. B A. y e. B ( x ., y ) = if ( x = y , .1. , .0. ) /\ ( ( ocv ` W ) ` B ) = { ( 0g ` W ) } ) ) ) | 
						
							| 9 | 8 | simp3bi |  |-  ( B e. ( OBasis ` W ) -> ( A. x e. B A. y e. B ( x ., y ) = if ( x = y , .1. , .0. ) /\ ( ( ocv ` W ) ` B ) = { ( 0g ` W ) } ) ) | 
						
							| 10 | 9 | simpld |  |-  ( B e. ( OBasis ` W ) -> A. x e. B A. y e. B ( x ., y ) = if ( x = y , .1. , .0. ) ) | 
						
							| 11 |  | oveq1 |  |-  ( x = P -> ( x ., y ) = ( P ., y ) ) | 
						
							| 12 |  | eqeq1 |  |-  ( x = P -> ( x = y <-> P = y ) ) | 
						
							| 13 | 12 | ifbid |  |-  ( x = P -> if ( x = y , .1. , .0. ) = if ( P = y , .1. , .0. ) ) | 
						
							| 14 | 11 13 | eqeq12d |  |-  ( x = P -> ( ( x ., y ) = if ( x = y , .1. , .0. ) <-> ( P ., y ) = if ( P = y , .1. , .0. ) ) ) | 
						
							| 15 |  | oveq2 |  |-  ( y = Q -> ( P ., y ) = ( P ., Q ) ) | 
						
							| 16 |  | eqeq2 |  |-  ( y = Q -> ( P = y <-> P = Q ) ) | 
						
							| 17 | 16 | ifbid |  |-  ( y = Q -> if ( P = y , .1. , .0. ) = if ( P = Q , .1. , .0. ) ) | 
						
							| 18 | 15 17 | eqeq12d |  |-  ( y = Q -> ( ( P ., y ) = if ( P = y , .1. , .0. ) <-> ( P ., Q ) = if ( P = Q , .1. , .0. ) ) ) | 
						
							| 19 | 14 18 | rspc2v |  |-  ( ( P e. B /\ Q e. B ) -> ( A. x e. B A. y e. B ( x ., y ) = if ( x = y , .1. , .0. ) -> ( P ., Q ) = if ( P = Q , .1. , .0. ) ) ) | 
						
							| 20 | 10 19 | syl5com |  |-  ( B e. ( OBasis ` W ) -> ( ( P e. B /\ Q e. B ) -> ( P ., Q ) = if ( P = Q , .1. , .0. ) ) ) | 
						
							| 21 | 20 | 3impib |  |-  ( ( B e. ( OBasis ` W ) /\ P e. B /\ Q e. B ) -> ( P ., Q ) = if ( P = Q , .1. , .0. ) ) |