Metamath Proof Explorer


Theorem obsip

Description: The inner product of two elements of an orthonormal basis. (Contributed by Mario Carneiro, 23-Oct-2015)

Ref Expression
Hypotheses isobs.v V = Base W
isobs.h , ˙ = 𝑖 W
isobs.f F = Scalar W
isobs.u 1 ˙ = 1 F
isobs.z 0 ˙ = 0 F
Assertion obsip B OBasis W P B Q B P , ˙ Q = if P = Q 1 ˙ 0 ˙

Proof

Step Hyp Ref Expression
1 isobs.v V = Base W
2 isobs.h , ˙ = 𝑖 W
3 isobs.f F = Scalar W
4 isobs.u 1 ˙ = 1 F
5 isobs.z 0 ˙ = 0 F
6 eqid ocv W = ocv W
7 eqid 0 W = 0 W
8 1 2 3 4 5 6 7 isobs B OBasis W W PreHil B V x B y B x , ˙ y = if x = y 1 ˙ 0 ˙ ocv W B = 0 W
9 8 simp3bi B OBasis W x B y B x , ˙ y = if x = y 1 ˙ 0 ˙ ocv W B = 0 W
10 9 simpld B OBasis W x B y B x , ˙ y = if x = y 1 ˙ 0 ˙
11 oveq1 x = P x , ˙ y = P , ˙ y
12 eqeq1 x = P x = y P = y
13 12 ifbid x = P if x = y 1 ˙ 0 ˙ = if P = y 1 ˙ 0 ˙
14 11 13 eqeq12d x = P x , ˙ y = if x = y 1 ˙ 0 ˙ P , ˙ y = if P = y 1 ˙ 0 ˙
15 oveq2 y = Q P , ˙ y = P , ˙ Q
16 eqeq2 y = Q P = y P = Q
17 16 ifbid y = Q if P = y 1 ˙ 0 ˙ = if P = Q 1 ˙ 0 ˙
18 15 17 eqeq12d y = Q P , ˙ y = if P = y 1 ˙ 0 ˙ P , ˙ Q = if P = Q 1 ˙ 0 ˙
19 14 18 rspc2v P B Q B x B y B x , ˙ y = if x = y 1 ˙ 0 ˙ P , ˙ Q = if P = Q 1 ˙ 0 ˙
20 10 19 syl5com B OBasis W P B Q B P , ˙ Q = if P = Q 1 ˙ 0 ˙
21 20 3impib B OBasis W P B Q B P , ˙ Q = if P = Q 1 ˙ 0 ˙