Database
BASIC ALGEBRAIC STRUCTURES
Generalized pre-Hilbert and Hilbert spaces
Orthogonal projection and orthonormal bases
obsipid
Next ⟩
obsrcl
Metamath Proof Explorer
Ascii
Unicode
Theorem
obsipid
Description:
A basis element has unit length.
(Contributed by
Mario Carneiro
, 23-Oct-2015)
Ref
Expression
Hypotheses
obsipid.h
⊢
,
˙
=
⋅
𝑖
⁡
W
obsipid.f
⊢
F
=
Scalar
⁡
W
obsipid.u
⊢
1
˙
=
1
F
Assertion
obsipid
⊢
B
∈
OBasis
⁡
W
∧
A
∈
B
→
A
,
˙
A
=
1
˙
Proof
Step
Hyp
Ref
Expression
1
obsipid.h
⊢
,
˙
=
⋅
𝑖
⁡
W
2
obsipid.f
⊢
F
=
Scalar
⁡
W
3
obsipid.u
⊢
1
˙
=
1
F
4
eqid
⊢
Base
W
=
Base
W
5
eqid
⊢
0
F
=
0
F
6
4
1
2
3
5
obsip
⊢
B
∈
OBasis
⁡
W
∧
A
∈
B
∧
A
∈
B
→
A
,
˙
A
=
if
A
=
A
1
˙
0
F
7
6
3anidm23
⊢
B
∈
OBasis
⁡
W
∧
A
∈
B
→
A
,
˙
A
=
if
A
=
A
1
˙
0
F
8
eqid
⊢
A
=
A
9
8
iftruei
⊢
if
A
=
A
1
˙
0
F
=
1
˙
10
7
9
eqtrdi
⊢
B
∈
OBasis
⁡
W
∧
A
∈
B
→
A
,
˙
A
=
1
˙