| Step | Hyp | Ref | Expression | 
						
							| 1 |  | obsipid.h |  |-  ., = ( .i ` W ) | 
						
							| 2 |  | obsipid.f |  |-  F = ( Scalar ` W ) | 
						
							| 3 |  | obsipid.u |  |-  .1. = ( 1r ` F ) | 
						
							| 4 |  | eqid |  |-  ( Base ` W ) = ( Base ` W ) | 
						
							| 5 |  | eqid |  |-  ( 0g ` F ) = ( 0g ` F ) | 
						
							| 6 | 4 1 2 3 5 | obsip |  |-  ( ( B e. ( OBasis ` W ) /\ A e. B /\ A e. B ) -> ( A ., A ) = if ( A = A , .1. , ( 0g ` F ) ) ) | 
						
							| 7 | 6 | 3anidm23 |  |-  ( ( B e. ( OBasis ` W ) /\ A e. B ) -> ( A ., A ) = if ( A = A , .1. , ( 0g ` F ) ) ) | 
						
							| 8 |  | eqid |  |-  A = A | 
						
							| 9 | 8 | iftruei |  |-  if ( A = A , .1. , ( 0g ` F ) ) = .1. | 
						
							| 10 | 7 9 | eqtrdi |  |-  ( ( B e. ( OBasis ` W ) /\ A e. B ) -> ( A ., A ) = .1. ) |