Step |
Hyp |
Ref |
Expression |
1 |
|
obsipid.h |
|- ., = ( .i ` W ) |
2 |
|
obsipid.f |
|- F = ( Scalar ` W ) |
3 |
|
obsipid.u |
|- .1. = ( 1r ` F ) |
4 |
|
eqid |
|- ( Base ` W ) = ( Base ` W ) |
5 |
|
eqid |
|- ( 0g ` F ) = ( 0g ` F ) |
6 |
4 1 2 3 5
|
obsip |
|- ( ( B e. ( OBasis ` W ) /\ A e. B /\ A e. B ) -> ( A ., A ) = if ( A = A , .1. , ( 0g ` F ) ) ) |
7 |
6
|
3anidm23 |
|- ( ( B e. ( OBasis ` W ) /\ A e. B ) -> ( A ., A ) = if ( A = A , .1. , ( 0g ` F ) ) ) |
8 |
|
eqid |
|- A = A |
9 |
8
|
iftruei |
|- if ( A = A , .1. , ( 0g ` F ) ) = .1. |
10 |
7 9
|
eqtrdi |
|- ( ( B e. ( OBasis ` W ) /\ A e. B ) -> ( A ., A ) = .1. ) |