Metamath Proof Explorer


Theorem obsipid

Description: A basis element has unit length. (Contributed by Mario Carneiro, 23-Oct-2015)

Ref Expression
Hypotheses obsipid.h
|- ., = ( .i ` W )
obsipid.f
|- F = ( Scalar ` W )
obsipid.u
|- .1. = ( 1r ` F )
Assertion obsipid
|- ( ( B e. ( OBasis ` W ) /\ A e. B ) -> ( A ., A ) = .1. )

Proof

Step Hyp Ref Expression
1 obsipid.h
 |-  ., = ( .i ` W )
2 obsipid.f
 |-  F = ( Scalar ` W )
3 obsipid.u
 |-  .1. = ( 1r ` F )
4 eqid
 |-  ( Base ` W ) = ( Base ` W )
5 eqid
 |-  ( 0g ` F ) = ( 0g ` F )
6 4 1 2 3 5 obsip
 |-  ( ( B e. ( OBasis ` W ) /\ A e. B /\ A e. B ) -> ( A ., A ) = if ( A = A , .1. , ( 0g ` F ) ) )
7 6 3anidm23
 |-  ( ( B e. ( OBasis ` W ) /\ A e. B ) -> ( A ., A ) = if ( A = A , .1. , ( 0g ` F ) ) )
8 eqid
 |-  A = A
9 8 iftruei
 |-  if ( A = A , .1. , ( 0g ` F ) ) = .1.
10 7 9 eqtrdi
 |-  ( ( B e. ( OBasis ` W ) /\ A e. B ) -> ( A ., A ) = .1. )