| Step | Hyp | Ref | Expression | 
						
							| 1 |  | obsipid.h | ⊢  ,   =  ( ·𝑖 ‘ 𝑊 ) | 
						
							| 2 |  | obsipid.f | ⊢ 𝐹  =  ( Scalar ‘ 𝑊 ) | 
						
							| 3 |  | obsipid.u | ⊢  1   =  ( 1r ‘ 𝐹 ) | 
						
							| 4 |  | eqid | ⊢ ( Base ‘ 𝑊 )  =  ( Base ‘ 𝑊 ) | 
						
							| 5 |  | eqid | ⊢ ( 0g ‘ 𝐹 )  =  ( 0g ‘ 𝐹 ) | 
						
							| 6 | 4 1 2 3 5 | obsip | ⊢ ( ( 𝐵  ∈  ( OBasis ‘ 𝑊 )  ∧  𝐴  ∈  𝐵  ∧  𝐴  ∈  𝐵 )  →  ( 𝐴  ,  𝐴 )  =  if ( 𝐴  =  𝐴 ,   1  ,  ( 0g ‘ 𝐹 ) ) ) | 
						
							| 7 | 6 | 3anidm23 | ⊢ ( ( 𝐵  ∈  ( OBasis ‘ 𝑊 )  ∧  𝐴  ∈  𝐵 )  →  ( 𝐴  ,  𝐴 )  =  if ( 𝐴  =  𝐴 ,   1  ,  ( 0g ‘ 𝐹 ) ) ) | 
						
							| 8 |  | eqid | ⊢ 𝐴  =  𝐴 | 
						
							| 9 | 8 | iftruei | ⊢ if ( 𝐴  =  𝐴 ,   1  ,  ( 0g ‘ 𝐹 ) )  =   1 | 
						
							| 10 | 7 9 | eqtrdi | ⊢ ( ( 𝐵  ∈  ( OBasis ‘ 𝑊 )  ∧  𝐴  ∈  𝐵 )  →  ( 𝐴  ,  𝐴 )  =   1  ) |