| Step |
Hyp |
Ref |
Expression |
| 1 |
|
obsipid.h |
⊢ , = ( ·𝑖 ‘ 𝑊 ) |
| 2 |
|
obsipid.f |
⊢ 𝐹 = ( Scalar ‘ 𝑊 ) |
| 3 |
|
obsipid.u |
⊢ 1 = ( 1r ‘ 𝐹 ) |
| 4 |
|
eqid |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) |
| 5 |
|
eqid |
⊢ ( 0g ‘ 𝐹 ) = ( 0g ‘ 𝐹 ) |
| 6 |
4 1 2 3 5
|
obsip |
⊢ ( ( 𝐵 ∈ ( OBasis ‘ 𝑊 ) ∧ 𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐵 ) → ( 𝐴 , 𝐴 ) = if ( 𝐴 = 𝐴 , 1 , ( 0g ‘ 𝐹 ) ) ) |
| 7 |
6
|
3anidm23 |
⊢ ( ( 𝐵 ∈ ( OBasis ‘ 𝑊 ) ∧ 𝐴 ∈ 𝐵 ) → ( 𝐴 , 𝐴 ) = if ( 𝐴 = 𝐴 , 1 , ( 0g ‘ 𝐹 ) ) ) |
| 8 |
|
eqid |
⊢ 𝐴 = 𝐴 |
| 9 |
8
|
iftruei |
⊢ if ( 𝐴 = 𝐴 , 1 , ( 0g ‘ 𝐹 ) ) = 1 |
| 10 |
7 9
|
eqtrdi |
⊢ ( ( 𝐵 ∈ ( OBasis ‘ 𝑊 ) ∧ 𝐴 ∈ 𝐵 ) → ( 𝐴 , 𝐴 ) = 1 ) |