Metamath Proof Explorer


Theorem obsipid

Description: A basis element has unit length. (Contributed by Mario Carneiro, 23-Oct-2015)

Ref Expression
Hypotheses obsipid.h , = ( ·𝑖𝑊 )
obsipid.f 𝐹 = ( Scalar ‘ 𝑊 )
obsipid.u 1 = ( 1r𝐹 )
Assertion obsipid ( ( 𝐵 ∈ ( OBasis ‘ 𝑊 ) ∧ 𝐴𝐵 ) → ( 𝐴 , 𝐴 ) = 1 )

Proof

Step Hyp Ref Expression
1 obsipid.h , = ( ·𝑖𝑊 )
2 obsipid.f 𝐹 = ( Scalar ‘ 𝑊 )
3 obsipid.u 1 = ( 1r𝐹 )
4 eqid ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 )
5 eqid ( 0g𝐹 ) = ( 0g𝐹 )
6 4 1 2 3 5 obsip ( ( 𝐵 ∈ ( OBasis ‘ 𝑊 ) ∧ 𝐴𝐵𝐴𝐵 ) → ( 𝐴 , 𝐴 ) = if ( 𝐴 = 𝐴 , 1 , ( 0g𝐹 ) ) )
7 6 3anidm23 ( ( 𝐵 ∈ ( OBasis ‘ 𝑊 ) ∧ 𝐴𝐵 ) → ( 𝐴 , 𝐴 ) = if ( 𝐴 = 𝐴 , 1 , ( 0g𝐹 ) ) )
8 eqid 𝐴 = 𝐴
9 8 iftruei if ( 𝐴 = 𝐴 , 1 , ( 0g𝐹 ) ) = 1
10 7 9 eqtrdi ( ( 𝐵 ∈ ( OBasis ‘ 𝑊 ) ∧ 𝐴𝐵 ) → ( 𝐴 , 𝐴 ) = 1 )