Step |
Hyp |
Ref |
Expression |
1 |
|
hlphl |
|- ( W e. CHil -> W e. PreHil ) |
2 |
|
eqid |
|- ( proj ` W ) = ( proj ` W ) |
3 |
|
eqid |
|- ( ClSubSp ` W ) = ( ClSubSp ` W ) |
4 |
2 3
|
pjcss |
|- ( W e. PreHil -> dom ( proj ` W ) C_ ( ClSubSp ` W ) ) |
5 |
1 4
|
syl |
|- ( W e. CHil -> dom ( proj ` W ) C_ ( ClSubSp ` W ) ) |
6 |
|
eqid |
|- ( Base ` W ) = ( Base ` W ) |
7 |
|
eqid |
|- ( TopOpen ` W ) = ( TopOpen ` W ) |
8 |
|
eqid |
|- ( LSubSp ` W ) = ( LSubSp ` W ) |
9 |
6 7 8 3
|
cldcss2 |
|- ( W e. CHil -> ( ClSubSp ` W ) = ( ( LSubSp ` W ) i^i ( Clsd ` ( TopOpen ` W ) ) ) ) |
10 |
|
elin |
|- ( x e. ( ( LSubSp ` W ) i^i ( Clsd ` ( TopOpen ` W ) ) ) <-> ( x e. ( LSubSp ` W ) /\ x e. ( Clsd ` ( TopOpen ` W ) ) ) ) |
11 |
7 8 2
|
pjth2 |
|- ( ( W e. CHil /\ x e. ( LSubSp ` W ) /\ x e. ( Clsd ` ( TopOpen ` W ) ) ) -> x e. dom ( proj ` W ) ) |
12 |
11
|
3expib |
|- ( W e. CHil -> ( ( x e. ( LSubSp ` W ) /\ x e. ( Clsd ` ( TopOpen ` W ) ) ) -> x e. dom ( proj ` W ) ) ) |
13 |
10 12
|
syl5bi |
|- ( W e. CHil -> ( x e. ( ( LSubSp ` W ) i^i ( Clsd ` ( TopOpen ` W ) ) ) -> x e. dom ( proj ` W ) ) ) |
14 |
13
|
ssrdv |
|- ( W e. CHil -> ( ( LSubSp ` W ) i^i ( Clsd ` ( TopOpen ` W ) ) ) C_ dom ( proj ` W ) ) |
15 |
9 14
|
eqsstrd |
|- ( W e. CHil -> ( ClSubSp ` W ) C_ dom ( proj ` W ) ) |
16 |
5 15
|
eqssd |
|- ( W e. CHil -> dom ( proj ` W ) = ( ClSubSp ` W ) ) |
17 |
2 3
|
ishil |
|- ( W e. Hil <-> ( W e. PreHil /\ dom ( proj ` W ) = ( ClSubSp ` W ) ) ) |
18 |
1 16 17
|
sylanbrc |
|- ( W e. CHil -> W e. Hil ) |