Metamath Proof Explorer


Theorem cldcss2

Description: Corollary of the Projection Theorem: A topologically closed subspace is algebraically closed in Hilbert space. (Contributed by Mario Carneiro, 17-Oct-2015)

Ref Expression
Hypotheses cldcss.v
|- V = ( Base ` W )
cldcss.j
|- J = ( TopOpen ` W )
cldcss.l
|- L = ( LSubSp ` W )
cldcss.c
|- C = ( ClSubSp ` W )
Assertion cldcss2
|- ( W e. CHil -> C = ( L i^i ( Clsd ` J ) ) )

Proof

Step Hyp Ref Expression
1 cldcss.v
 |-  V = ( Base ` W )
2 cldcss.j
 |-  J = ( TopOpen ` W )
3 cldcss.l
 |-  L = ( LSubSp ` W )
4 cldcss.c
 |-  C = ( ClSubSp ` W )
5 1 2 3 4 cldcss
 |-  ( W e. CHil -> ( x e. C <-> ( x e. L /\ x e. ( Clsd ` J ) ) ) )
6 elin
 |-  ( x e. ( L i^i ( Clsd ` J ) ) <-> ( x e. L /\ x e. ( Clsd ` J ) ) )
7 5 6 bitr4di
 |-  ( W e. CHil -> ( x e. C <-> x e. ( L i^i ( Clsd ` J ) ) ) )
8 7 eqrdv
 |-  ( W e. CHil -> C = ( L i^i ( Clsd ` J ) ) )