Description: Corollary of the Projection Theorem: A topologically closed subspace is algebraically closed in Hilbert space. (Contributed by Mario Carneiro, 17-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cldcss.v | |- V = ( Base ` W ) |
|
cldcss.j | |- J = ( TopOpen ` W ) |
||
cldcss.l | |- L = ( LSubSp ` W ) |
||
cldcss.c | |- C = ( ClSubSp ` W ) |
||
Assertion | cldcss2 | |- ( W e. CHil -> C = ( L i^i ( Clsd ` J ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cldcss.v | |- V = ( Base ` W ) |
|
2 | cldcss.j | |- J = ( TopOpen ` W ) |
|
3 | cldcss.l | |- L = ( LSubSp ` W ) |
|
4 | cldcss.c | |- C = ( ClSubSp ` W ) |
|
5 | 1 2 3 4 | cldcss | |- ( W e. CHil -> ( x e. C <-> ( x e. L /\ x e. ( Clsd ` J ) ) ) ) |
6 | elin | |- ( x e. ( L i^i ( Clsd ` J ) ) <-> ( x e. L /\ x e. ( Clsd ` J ) ) ) |
|
7 | 5 6 | bitr4di | |- ( W e. CHil -> ( x e. C <-> x e. ( L i^i ( Clsd ` J ) ) ) ) |
8 | 7 | eqrdv | |- ( W e. CHil -> C = ( L i^i ( Clsd ` J ) ) ) |