Metamath Proof Explorer


Theorem cldcss

Description: Corollary of the Projection Theorem: A topologically closed subspace is algebraically closed in Hilbert space. (Contributed by Mario Carneiro, 17-Oct-2015)

Ref Expression
Hypotheses cldcss.v
|- V = ( Base ` W )
cldcss.j
|- J = ( TopOpen ` W )
cldcss.l
|- L = ( LSubSp ` W )
cldcss.c
|- C = ( ClSubSp ` W )
Assertion cldcss
|- ( W e. CHil -> ( U e. C <-> ( U e. L /\ U e. ( Clsd ` J ) ) ) )

Proof

Step Hyp Ref Expression
1 cldcss.v
 |-  V = ( Base ` W )
2 cldcss.j
 |-  J = ( TopOpen ` W )
3 cldcss.l
 |-  L = ( LSubSp ` W )
4 cldcss.c
 |-  C = ( ClSubSp ` W )
5 hlphl
 |-  ( W e. CHil -> W e. PreHil )
6 4 3 csslss
 |-  ( ( W e. PreHil /\ U e. C ) -> U e. L )
7 5 6 sylan
 |-  ( ( W e. CHil /\ U e. C ) -> U e. L )
8 hlcph
 |-  ( W e. CHil -> W e. CPreHil )
9 4 2 csscld
 |-  ( ( W e. CPreHil /\ U e. C ) -> U e. ( Clsd ` J ) )
10 8 9 sylan
 |-  ( ( W e. CHil /\ U e. C ) -> U e. ( Clsd ` J ) )
11 7 10 jca
 |-  ( ( W e. CHil /\ U e. C ) -> ( U e. L /\ U e. ( Clsd ` J ) ) )
12 5 3ad2ant1
 |-  ( ( W e. CHil /\ U e. L /\ U e. ( Clsd ` J ) ) -> W e. PreHil )
13 eqid
 |-  ( proj ` W ) = ( proj ` W )
14 13 4 pjcss
 |-  ( W e. PreHil -> dom ( proj ` W ) C_ C )
15 12 14 syl
 |-  ( ( W e. CHil /\ U e. L /\ U e. ( Clsd ` J ) ) -> dom ( proj ` W ) C_ C )
16 2 3 13 pjth2
 |-  ( ( W e. CHil /\ U e. L /\ U e. ( Clsd ` J ) ) -> U e. dom ( proj ` W ) )
17 15 16 sseldd
 |-  ( ( W e. CHil /\ U e. L /\ U e. ( Clsd ` J ) ) -> U e. C )
18 17 3expb
 |-  ( ( W e. CHil /\ ( U e. L /\ U e. ( Clsd ` J ) ) ) -> U e. C )
19 11 18 impbida
 |-  ( W e. CHil -> ( U e. C <-> ( U e. L /\ U e. ( Clsd ` J ) ) ) )