| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cldcss.v |  |-  V = ( Base ` W ) | 
						
							| 2 |  | cldcss.j |  |-  J = ( TopOpen ` W ) | 
						
							| 3 |  | cldcss.l |  |-  L = ( LSubSp ` W ) | 
						
							| 4 |  | cldcss.c |  |-  C = ( ClSubSp ` W ) | 
						
							| 5 |  | hlphl |  |-  ( W e. CHil -> W e. PreHil ) | 
						
							| 6 | 4 3 | csslss |  |-  ( ( W e. PreHil /\ U e. C ) -> U e. L ) | 
						
							| 7 | 5 6 | sylan |  |-  ( ( W e. CHil /\ U e. C ) -> U e. L ) | 
						
							| 8 |  | hlcph |  |-  ( W e. CHil -> W e. CPreHil ) | 
						
							| 9 | 4 2 | csscld |  |-  ( ( W e. CPreHil /\ U e. C ) -> U e. ( Clsd ` J ) ) | 
						
							| 10 | 8 9 | sylan |  |-  ( ( W e. CHil /\ U e. C ) -> U e. ( Clsd ` J ) ) | 
						
							| 11 | 7 10 | jca |  |-  ( ( W e. CHil /\ U e. C ) -> ( U e. L /\ U e. ( Clsd ` J ) ) ) | 
						
							| 12 | 5 | 3ad2ant1 |  |-  ( ( W e. CHil /\ U e. L /\ U e. ( Clsd ` J ) ) -> W e. PreHil ) | 
						
							| 13 |  | eqid |  |-  ( proj ` W ) = ( proj ` W ) | 
						
							| 14 | 13 4 | pjcss |  |-  ( W e. PreHil -> dom ( proj ` W ) C_ C ) | 
						
							| 15 | 12 14 | syl |  |-  ( ( W e. CHil /\ U e. L /\ U e. ( Clsd ` J ) ) -> dom ( proj ` W ) C_ C ) | 
						
							| 16 | 2 3 13 | pjth2 |  |-  ( ( W e. CHil /\ U e. L /\ U e. ( Clsd ` J ) ) -> U e. dom ( proj ` W ) ) | 
						
							| 17 | 15 16 | sseldd |  |-  ( ( W e. CHil /\ U e. L /\ U e. ( Clsd ` J ) ) -> U e. C ) | 
						
							| 18 | 17 | 3expb |  |-  ( ( W e. CHil /\ ( U e. L /\ U e. ( Clsd ` J ) ) ) -> U e. C ) | 
						
							| 19 | 11 18 | impbida |  |-  ( W e. CHil -> ( U e. C <-> ( U e. L /\ U e. ( Clsd ` J ) ) ) ) |