Step |
Hyp |
Ref |
Expression |
1 |
|
cldcss.v |
|- V = ( Base ` W ) |
2 |
|
cldcss.j |
|- J = ( TopOpen ` W ) |
3 |
|
cldcss.l |
|- L = ( LSubSp ` W ) |
4 |
|
cldcss.c |
|- C = ( ClSubSp ` W ) |
5 |
|
hlphl |
|- ( W e. CHil -> W e. PreHil ) |
6 |
4 3
|
csslss |
|- ( ( W e. PreHil /\ U e. C ) -> U e. L ) |
7 |
5 6
|
sylan |
|- ( ( W e. CHil /\ U e. C ) -> U e. L ) |
8 |
|
hlcph |
|- ( W e. CHil -> W e. CPreHil ) |
9 |
4 2
|
csscld |
|- ( ( W e. CPreHil /\ U e. C ) -> U e. ( Clsd ` J ) ) |
10 |
8 9
|
sylan |
|- ( ( W e. CHil /\ U e. C ) -> U e. ( Clsd ` J ) ) |
11 |
7 10
|
jca |
|- ( ( W e. CHil /\ U e. C ) -> ( U e. L /\ U e. ( Clsd ` J ) ) ) |
12 |
5
|
3ad2ant1 |
|- ( ( W e. CHil /\ U e. L /\ U e. ( Clsd ` J ) ) -> W e. PreHil ) |
13 |
|
eqid |
|- ( proj ` W ) = ( proj ` W ) |
14 |
13 4
|
pjcss |
|- ( W e. PreHil -> dom ( proj ` W ) C_ C ) |
15 |
12 14
|
syl |
|- ( ( W e. CHil /\ U e. L /\ U e. ( Clsd ` J ) ) -> dom ( proj ` W ) C_ C ) |
16 |
2 3 13
|
pjth2 |
|- ( ( W e. CHil /\ U e. L /\ U e. ( Clsd ` J ) ) -> U e. dom ( proj ` W ) ) |
17 |
15 16
|
sseldd |
|- ( ( W e. CHil /\ U e. L /\ U e. ( Clsd ` J ) ) -> U e. C ) |
18 |
17
|
3expb |
|- ( ( W e. CHil /\ ( U e. L /\ U e. ( Clsd ` J ) ) ) -> U e. C ) |
19 |
11 18
|
impbida |
|- ( W e. CHil -> ( U e. C <-> ( U e. L /\ U e. ( Clsd ` J ) ) ) ) |