Metamath Proof Explorer


Theorem cldcss

Description: Corollary of the Projection Theorem: A topologically closed subspace is algebraically closed in Hilbert space. (Contributed by Mario Carneiro, 17-Oct-2015)

Ref Expression
Hypotheses cldcss.v 𝑉 = ( Base ‘ 𝑊 )
cldcss.j 𝐽 = ( TopOpen ‘ 𝑊 )
cldcss.l 𝐿 = ( LSubSp ‘ 𝑊 )
cldcss.c 𝐶 = ( ClSubSp ‘ 𝑊 )
Assertion cldcss ( 𝑊 ∈ ℂHil → ( 𝑈𝐶 ↔ ( 𝑈𝐿𝑈 ∈ ( Clsd ‘ 𝐽 ) ) ) )

Proof

Step Hyp Ref Expression
1 cldcss.v 𝑉 = ( Base ‘ 𝑊 )
2 cldcss.j 𝐽 = ( TopOpen ‘ 𝑊 )
3 cldcss.l 𝐿 = ( LSubSp ‘ 𝑊 )
4 cldcss.c 𝐶 = ( ClSubSp ‘ 𝑊 )
5 hlphl ( 𝑊 ∈ ℂHil → 𝑊 ∈ PreHil )
6 4 3 csslss ( ( 𝑊 ∈ PreHil ∧ 𝑈𝐶 ) → 𝑈𝐿 )
7 5 6 sylan ( ( 𝑊 ∈ ℂHil ∧ 𝑈𝐶 ) → 𝑈𝐿 )
8 hlcph ( 𝑊 ∈ ℂHil → 𝑊 ∈ ℂPreHil )
9 4 2 csscld ( ( 𝑊 ∈ ℂPreHil ∧ 𝑈𝐶 ) → 𝑈 ∈ ( Clsd ‘ 𝐽 ) )
10 8 9 sylan ( ( 𝑊 ∈ ℂHil ∧ 𝑈𝐶 ) → 𝑈 ∈ ( Clsd ‘ 𝐽 ) )
11 7 10 jca ( ( 𝑊 ∈ ℂHil ∧ 𝑈𝐶 ) → ( 𝑈𝐿𝑈 ∈ ( Clsd ‘ 𝐽 ) ) )
12 5 3ad2ant1 ( ( 𝑊 ∈ ℂHil ∧ 𝑈𝐿𝑈 ∈ ( Clsd ‘ 𝐽 ) ) → 𝑊 ∈ PreHil )
13 eqid ( proj ‘ 𝑊 ) = ( proj ‘ 𝑊 )
14 13 4 pjcss ( 𝑊 ∈ PreHil → dom ( proj ‘ 𝑊 ) ⊆ 𝐶 )
15 12 14 syl ( ( 𝑊 ∈ ℂHil ∧ 𝑈𝐿𝑈 ∈ ( Clsd ‘ 𝐽 ) ) → dom ( proj ‘ 𝑊 ) ⊆ 𝐶 )
16 2 3 13 pjth2 ( ( 𝑊 ∈ ℂHil ∧ 𝑈𝐿𝑈 ∈ ( Clsd ‘ 𝐽 ) ) → 𝑈 ∈ dom ( proj ‘ 𝑊 ) )
17 15 16 sseldd ( ( 𝑊 ∈ ℂHil ∧ 𝑈𝐿𝑈 ∈ ( Clsd ‘ 𝐽 ) ) → 𝑈𝐶 )
18 17 3expb ( ( 𝑊 ∈ ℂHil ∧ ( 𝑈𝐿𝑈 ∈ ( Clsd ‘ 𝐽 ) ) ) → 𝑈𝐶 )
19 11 18 impbida ( 𝑊 ∈ ℂHil → ( 𝑈𝐶 ↔ ( 𝑈𝐿𝑈 ∈ ( Clsd ‘ 𝐽 ) ) ) )