Step |
Hyp |
Ref |
Expression |
1 |
|
cldcss.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
2 |
|
cldcss.j |
⊢ 𝐽 = ( TopOpen ‘ 𝑊 ) |
3 |
|
cldcss.l |
⊢ 𝐿 = ( LSubSp ‘ 𝑊 ) |
4 |
|
cldcss.c |
⊢ 𝐶 = ( ClSubSp ‘ 𝑊 ) |
5 |
|
hlphl |
⊢ ( 𝑊 ∈ ℂHil → 𝑊 ∈ PreHil ) |
6 |
4 3
|
csslss |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝑈 ∈ 𝐶 ) → 𝑈 ∈ 𝐿 ) |
7 |
5 6
|
sylan |
⊢ ( ( 𝑊 ∈ ℂHil ∧ 𝑈 ∈ 𝐶 ) → 𝑈 ∈ 𝐿 ) |
8 |
|
hlcph |
⊢ ( 𝑊 ∈ ℂHil → 𝑊 ∈ ℂPreHil ) |
9 |
4 2
|
csscld |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑈 ∈ 𝐶 ) → 𝑈 ∈ ( Clsd ‘ 𝐽 ) ) |
10 |
8 9
|
sylan |
⊢ ( ( 𝑊 ∈ ℂHil ∧ 𝑈 ∈ 𝐶 ) → 𝑈 ∈ ( Clsd ‘ 𝐽 ) ) |
11 |
7 10
|
jca |
⊢ ( ( 𝑊 ∈ ℂHil ∧ 𝑈 ∈ 𝐶 ) → ( 𝑈 ∈ 𝐿 ∧ 𝑈 ∈ ( Clsd ‘ 𝐽 ) ) ) |
12 |
5
|
3ad2ant1 |
⊢ ( ( 𝑊 ∈ ℂHil ∧ 𝑈 ∈ 𝐿 ∧ 𝑈 ∈ ( Clsd ‘ 𝐽 ) ) → 𝑊 ∈ PreHil ) |
13 |
|
eqid |
⊢ ( proj ‘ 𝑊 ) = ( proj ‘ 𝑊 ) |
14 |
13 4
|
pjcss |
⊢ ( 𝑊 ∈ PreHil → dom ( proj ‘ 𝑊 ) ⊆ 𝐶 ) |
15 |
12 14
|
syl |
⊢ ( ( 𝑊 ∈ ℂHil ∧ 𝑈 ∈ 𝐿 ∧ 𝑈 ∈ ( Clsd ‘ 𝐽 ) ) → dom ( proj ‘ 𝑊 ) ⊆ 𝐶 ) |
16 |
2 3 13
|
pjth2 |
⊢ ( ( 𝑊 ∈ ℂHil ∧ 𝑈 ∈ 𝐿 ∧ 𝑈 ∈ ( Clsd ‘ 𝐽 ) ) → 𝑈 ∈ dom ( proj ‘ 𝑊 ) ) |
17 |
15 16
|
sseldd |
⊢ ( ( 𝑊 ∈ ℂHil ∧ 𝑈 ∈ 𝐿 ∧ 𝑈 ∈ ( Clsd ‘ 𝐽 ) ) → 𝑈 ∈ 𝐶 ) |
18 |
17
|
3expb |
⊢ ( ( 𝑊 ∈ ℂHil ∧ ( 𝑈 ∈ 𝐿 ∧ 𝑈 ∈ ( Clsd ‘ 𝐽 ) ) ) → 𝑈 ∈ 𝐶 ) |
19 |
11 18
|
impbida |
⊢ ( 𝑊 ∈ ℂHil → ( 𝑈 ∈ 𝐶 ↔ ( 𝑈 ∈ 𝐿 ∧ 𝑈 ∈ ( Clsd ‘ 𝐽 ) ) ) ) |