| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cldcss.v | ⊢ 𝑉  =  ( Base ‘ 𝑊 ) | 
						
							| 2 |  | cldcss.j | ⊢ 𝐽  =  ( TopOpen ‘ 𝑊 ) | 
						
							| 3 |  | cldcss.l | ⊢ 𝐿  =  ( LSubSp ‘ 𝑊 ) | 
						
							| 4 |  | cldcss.c | ⊢ 𝐶  =  ( ClSubSp ‘ 𝑊 ) | 
						
							| 5 |  | hlphl | ⊢ ( 𝑊  ∈  ℂHil  →  𝑊  ∈  PreHil ) | 
						
							| 6 | 4 3 | csslss | ⊢ ( ( 𝑊  ∈  PreHil  ∧  𝑈  ∈  𝐶 )  →  𝑈  ∈  𝐿 ) | 
						
							| 7 | 5 6 | sylan | ⊢ ( ( 𝑊  ∈  ℂHil  ∧  𝑈  ∈  𝐶 )  →  𝑈  ∈  𝐿 ) | 
						
							| 8 |  | hlcph | ⊢ ( 𝑊  ∈  ℂHil  →  𝑊  ∈  ℂPreHil ) | 
						
							| 9 | 4 2 | csscld | ⊢ ( ( 𝑊  ∈  ℂPreHil  ∧  𝑈  ∈  𝐶 )  →  𝑈  ∈  ( Clsd ‘ 𝐽 ) ) | 
						
							| 10 | 8 9 | sylan | ⊢ ( ( 𝑊  ∈  ℂHil  ∧  𝑈  ∈  𝐶 )  →  𝑈  ∈  ( Clsd ‘ 𝐽 ) ) | 
						
							| 11 | 7 10 | jca | ⊢ ( ( 𝑊  ∈  ℂHil  ∧  𝑈  ∈  𝐶 )  →  ( 𝑈  ∈  𝐿  ∧  𝑈  ∈  ( Clsd ‘ 𝐽 ) ) ) | 
						
							| 12 | 5 | 3ad2ant1 | ⊢ ( ( 𝑊  ∈  ℂHil  ∧  𝑈  ∈  𝐿  ∧  𝑈  ∈  ( Clsd ‘ 𝐽 ) )  →  𝑊  ∈  PreHil ) | 
						
							| 13 |  | eqid | ⊢ ( proj ‘ 𝑊 )  =  ( proj ‘ 𝑊 ) | 
						
							| 14 | 13 4 | pjcss | ⊢ ( 𝑊  ∈  PreHil  →  dom  ( proj ‘ 𝑊 )  ⊆  𝐶 ) | 
						
							| 15 | 12 14 | syl | ⊢ ( ( 𝑊  ∈  ℂHil  ∧  𝑈  ∈  𝐿  ∧  𝑈  ∈  ( Clsd ‘ 𝐽 ) )  →  dom  ( proj ‘ 𝑊 )  ⊆  𝐶 ) | 
						
							| 16 | 2 3 13 | pjth2 | ⊢ ( ( 𝑊  ∈  ℂHil  ∧  𝑈  ∈  𝐿  ∧  𝑈  ∈  ( Clsd ‘ 𝐽 ) )  →  𝑈  ∈  dom  ( proj ‘ 𝑊 ) ) | 
						
							| 17 | 15 16 | sseldd | ⊢ ( ( 𝑊  ∈  ℂHil  ∧  𝑈  ∈  𝐿  ∧  𝑈  ∈  ( Clsd ‘ 𝐽 ) )  →  𝑈  ∈  𝐶 ) | 
						
							| 18 | 17 | 3expb | ⊢ ( ( 𝑊  ∈  ℂHil  ∧  ( 𝑈  ∈  𝐿  ∧  𝑈  ∈  ( Clsd ‘ 𝐽 ) ) )  →  𝑈  ∈  𝐶 ) | 
						
							| 19 | 11 18 | impbida | ⊢ ( 𝑊  ∈  ℂHil  →  ( 𝑈  ∈  𝐶  ↔  ( 𝑈  ∈  𝐿  ∧  𝑈  ∈  ( Clsd ‘ 𝐽 ) ) ) ) |