Step |
Hyp |
Ref |
Expression |
1 |
|
csscld.c |
β’ πΆ = ( ClSubSp β π ) |
2 |
|
csscld.j |
β’ π½ = ( TopOpen β π ) |
3 |
|
eqid |
β’ ( ocv β π ) = ( ocv β π ) |
4 |
3 1
|
cssi |
β’ ( π β πΆ β π = ( ( ocv β π ) β ( ( ocv β π ) β π ) ) ) |
5 |
4
|
adantl |
β’ ( ( π β βPreHil β§ π β πΆ ) β π = ( ( ocv β π ) β ( ( ocv β π ) β π ) ) ) |
6 |
|
eqid |
β’ ( Base β π ) = ( Base β π ) |
7 |
6 3
|
ocvss |
β’ ( ( ocv β π ) β π ) β ( Base β π ) |
8 |
|
eqid |
β’ ( Β·π β π ) = ( Β·π β π ) |
9 |
|
eqid |
β’ ( Scalar β π ) = ( Scalar β π ) |
10 |
|
eqid |
β’ ( 0g β ( Scalar β π ) ) = ( 0g β ( Scalar β π ) ) |
11 |
6 8 9 10 3
|
ocvval |
β’ ( ( ( ocv β π ) β π ) β ( Base β π ) β ( ( ocv β π ) β ( ( ocv β π ) β π ) ) = { π₯ β ( Base β π ) β£ β π¦ β ( ( ocv β π ) β π ) ( π₯ ( Β·π β π ) π¦ ) = ( 0g β ( Scalar β π ) ) } ) |
12 |
7 11
|
mp1i |
β’ ( ( π β βPreHil β§ π β πΆ ) β ( ( ocv β π ) β ( ( ocv β π ) β π ) ) = { π₯ β ( Base β π ) β£ β π¦ β ( ( ocv β π ) β π ) ( π₯ ( Β·π β π ) π¦ ) = ( 0g β ( Scalar β π ) ) } ) |
13 |
|
riinrab |
β’ ( ( Base β π ) β© β© π¦ β ( ( ocv β π ) β π ) { π₯ β ( Base β π ) β£ ( π₯ ( Β·π β π ) π¦ ) = ( 0g β ( Scalar β π ) ) } ) = { π₯ β ( Base β π ) β£ β π¦ β ( ( ocv β π ) β π ) ( π₯ ( Β·π β π ) π¦ ) = ( 0g β ( Scalar β π ) ) } |
14 |
12 13
|
eqtr4di |
β’ ( ( π β βPreHil β§ π β πΆ ) β ( ( ocv β π ) β ( ( ocv β π ) β π ) ) = ( ( Base β π ) β© β© π¦ β ( ( ocv β π ) β π ) { π₯ β ( Base β π ) β£ ( π₯ ( Β·π β π ) π¦ ) = ( 0g β ( Scalar β π ) ) } ) ) |
15 |
|
cphnlm |
β’ ( π β βPreHil β π β NrmMod ) |
16 |
15
|
adantr |
β’ ( ( π β βPreHil β§ π β πΆ ) β π β NrmMod ) |
17 |
|
nlmngp |
β’ ( π β NrmMod β π β NrmGrp ) |
18 |
|
ngptps |
β’ ( π β NrmGrp β π β TopSp ) |
19 |
16 17 18
|
3syl |
β’ ( ( π β βPreHil β§ π β πΆ ) β π β TopSp ) |
20 |
6 2
|
istps |
β’ ( π β TopSp β π½ β ( TopOn β ( Base β π ) ) ) |
21 |
19 20
|
sylib |
β’ ( ( π β βPreHil β§ π β πΆ ) β π½ β ( TopOn β ( Base β π ) ) ) |
22 |
|
toponuni |
β’ ( π½ β ( TopOn β ( Base β π ) ) β ( Base β π ) = βͺ π½ ) |
23 |
21 22
|
syl |
β’ ( ( π β βPreHil β§ π β πΆ ) β ( Base β π ) = βͺ π½ ) |
24 |
23
|
ineq1d |
β’ ( ( π β βPreHil β§ π β πΆ ) β ( ( Base β π ) β© β© π¦ β ( ( ocv β π ) β π ) { π₯ β ( Base β π ) β£ ( π₯ ( Β·π β π ) π¦ ) = ( 0g β ( Scalar β π ) ) } ) = ( βͺ π½ β© β© π¦ β ( ( ocv β π ) β π ) { π₯ β ( Base β π ) β£ ( π₯ ( Β·π β π ) π¦ ) = ( 0g β ( Scalar β π ) ) } ) ) |
25 |
5 14 24
|
3eqtrd |
β’ ( ( π β βPreHil β§ π β πΆ ) β π = ( βͺ π½ β© β© π¦ β ( ( ocv β π ) β π ) { π₯ β ( Base β π ) β£ ( π₯ ( Β·π β π ) π¦ ) = ( 0g β ( Scalar β π ) ) } ) ) |
26 |
|
topontop |
β’ ( π½ β ( TopOn β ( Base β π ) ) β π½ β Top ) |
27 |
21 26
|
syl |
β’ ( ( π β βPreHil β§ π β πΆ ) β π½ β Top ) |
28 |
7
|
sseli |
β’ ( π¦ β ( ( ocv β π ) β π ) β π¦ β ( Base β π ) ) |
29 |
|
fvex |
β’ ( 0g β ( Scalar β π ) ) β V |
30 |
|
eqid |
β’ ( π₯ β ( Base β π ) β¦ ( π₯ ( Β·π β π ) π¦ ) ) = ( π₯ β ( Base β π ) β¦ ( π₯ ( Β·π β π ) π¦ ) ) |
31 |
30
|
mptiniseg |
β’ ( ( 0g β ( Scalar β π ) ) β V β ( β‘ ( π₯ β ( Base β π ) β¦ ( π₯ ( Β·π β π ) π¦ ) ) β { ( 0g β ( Scalar β π ) ) } ) = { π₯ β ( Base β π ) β£ ( π₯ ( Β·π β π ) π¦ ) = ( 0g β ( Scalar β π ) ) } ) |
32 |
29 31
|
ax-mp |
β’ ( β‘ ( π₯ β ( Base β π ) β¦ ( π₯ ( Β·π β π ) π¦ ) ) β { ( 0g β ( Scalar β π ) ) } ) = { π₯ β ( Base β π ) β£ ( π₯ ( Β·π β π ) π¦ ) = ( 0g β ( Scalar β π ) ) } |
33 |
|
eqid |
β’ ( TopOpen β βfld ) = ( TopOpen β βfld ) |
34 |
|
simpll |
β’ ( ( ( π β βPreHil β§ π β πΆ ) β§ π¦ β ( Base β π ) ) β π β βPreHil ) |
35 |
21
|
adantr |
β’ ( ( ( π β βPreHil β§ π β πΆ ) β§ π¦ β ( Base β π ) ) β π½ β ( TopOn β ( Base β π ) ) ) |
36 |
35
|
cnmptid |
β’ ( ( ( π β βPreHil β§ π β πΆ ) β§ π¦ β ( Base β π ) ) β ( π₯ β ( Base β π ) β¦ π₯ ) β ( π½ Cn π½ ) ) |
37 |
|
simpr |
β’ ( ( ( π β βPreHil β§ π β πΆ ) β§ π¦ β ( Base β π ) ) β π¦ β ( Base β π ) ) |
38 |
35 35 37
|
cnmptc |
β’ ( ( ( π β βPreHil β§ π β πΆ ) β§ π¦ β ( Base β π ) ) β ( π₯ β ( Base β π ) β¦ π¦ ) β ( π½ Cn π½ ) ) |
39 |
2 33 8 34 35 36 38
|
cnmpt1ip |
β’ ( ( ( π β βPreHil β§ π β πΆ ) β§ π¦ β ( Base β π ) ) β ( π₯ β ( Base β π ) β¦ ( π₯ ( Β·π β π ) π¦ ) ) β ( π½ Cn ( TopOpen β βfld ) ) ) |
40 |
33
|
cnfldhaus |
β’ ( TopOpen β βfld ) β Haus |
41 |
|
cphclm |
β’ ( π β βPreHil β π β βMod ) |
42 |
9
|
clm0 |
β’ ( π β βMod β 0 = ( 0g β ( Scalar β π ) ) ) |
43 |
41 42
|
syl |
β’ ( π β βPreHil β 0 = ( 0g β ( Scalar β π ) ) ) |
44 |
43
|
ad2antrr |
β’ ( ( ( π β βPreHil β§ π β πΆ ) β§ π¦ β ( Base β π ) ) β 0 = ( 0g β ( Scalar β π ) ) ) |
45 |
|
0cn |
β’ 0 β β |
46 |
44 45
|
eqeltrrdi |
β’ ( ( ( π β βPreHil β§ π β πΆ ) β§ π¦ β ( Base β π ) ) β ( 0g β ( Scalar β π ) ) β β ) |
47 |
|
unicntop |
β’ β = βͺ ( TopOpen β βfld ) |
48 |
47
|
sncld |
β’ ( ( ( TopOpen β βfld ) β Haus β§ ( 0g β ( Scalar β π ) ) β β ) β { ( 0g β ( Scalar β π ) ) } β ( Clsd β ( TopOpen β βfld ) ) ) |
49 |
40 46 48
|
sylancr |
β’ ( ( ( π β βPreHil β§ π β πΆ ) β§ π¦ β ( Base β π ) ) β { ( 0g β ( Scalar β π ) ) } β ( Clsd β ( TopOpen β βfld ) ) ) |
50 |
|
cnclima |
β’ ( ( ( π₯ β ( Base β π ) β¦ ( π₯ ( Β·π β π ) π¦ ) ) β ( π½ Cn ( TopOpen β βfld ) ) β§ { ( 0g β ( Scalar β π ) ) } β ( Clsd β ( TopOpen β βfld ) ) ) β ( β‘ ( π₯ β ( Base β π ) β¦ ( π₯ ( Β·π β π ) π¦ ) ) β { ( 0g β ( Scalar β π ) ) } ) β ( Clsd β π½ ) ) |
51 |
39 49 50
|
syl2anc |
β’ ( ( ( π β βPreHil β§ π β πΆ ) β§ π¦ β ( Base β π ) ) β ( β‘ ( π₯ β ( Base β π ) β¦ ( π₯ ( Β·π β π ) π¦ ) ) β { ( 0g β ( Scalar β π ) ) } ) β ( Clsd β π½ ) ) |
52 |
32 51
|
eqeltrrid |
β’ ( ( ( π β βPreHil β§ π β πΆ ) β§ π¦ β ( Base β π ) ) β { π₯ β ( Base β π ) β£ ( π₯ ( Β·π β π ) π¦ ) = ( 0g β ( Scalar β π ) ) } β ( Clsd β π½ ) ) |
53 |
28 52
|
sylan2 |
β’ ( ( ( π β βPreHil β§ π β πΆ ) β§ π¦ β ( ( ocv β π ) β π ) ) β { π₯ β ( Base β π ) β£ ( π₯ ( Β·π β π ) π¦ ) = ( 0g β ( Scalar β π ) ) } β ( Clsd β π½ ) ) |
54 |
53
|
ralrimiva |
β’ ( ( π β βPreHil β§ π β πΆ ) β β π¦ β ( ( ocv β π ) β π ) { π₯ β ( Base β π ) β£ ( π₯ ( Β·π β π ) π¦ ) = ( 0g β ( Scalar β π ) ) } β ( Clsd β π½ ) ) |
55 |
|
eqid |
β’ βͺ π½ = βͺ π½ |
56 |
55
|
riincld |
β’ ( ( π½ β Top β§ β π¦ β ( ( ocv β π ) β π ) { π₯ β ( Base β π ) β£ ( π₯ ( Β·π β π ) π¦ ) = ( 0g β ( Scalar β π ) ) } β ( Clsd β π½ ) ) β ( βͺ π½ β© β© π¦ β ( ( ocv β π ) β π ) { π₯ β ( Base β π ) β£ ( π₯ ( Β·π β π ) π¦ ) = ( 0g β ( Scalar β π ) ) } ) β ( Clsd β π½ ) ) |
57 |
27 54 56
|
syl2anc |
β’ ( ( π β βPreHil β§ π β πΆ ) β ( βͺ π½ β© β© π¦ β ( ( ocv β π ) β π ) { π₯ β ( Base β π ) β£ ( π₯ ( Β·π β π ) π¦ ) = ( 0g β ( Scalar β π ) ) } ) β ( Clsd β π½ ) ) |
58 |
25 57
|
eqeltrd |
β’ ( ( π β βPreHil β§ π β πΆ ) β π β ( Clsd β π½ ) ) |