| Step |
Hyp |
Ref |
Expression |
| 1 |
|
csscld.c |
⊢ 𝐶 = ( ClSubSp ‘ 𝑊 ) |
| 2 |
|
csscld.j |
⊢ 𝐽 = ( TopOpen ‘ 𝑊 ) |
| 3 |
|
eqid |
⊢ ( ocv ‘ 𝑊 ) = ( ocv ‘ 𝑊 ) |
| 4 |
3 1
|
cssi |
⊢ ( 𝑆 ∈ 𝐶 → 𝑆 = ( ( ocv ‘ 𝑊 ) ‘ ( ( ocv ‘ 𝑊 ) ‘ 𝑆 ) ) ) |
| 5 |
4
|
adantl |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑆 ∈ 𝐶 ) → 𝑆 = ( ( ocv ‘ 𝑊 ) ‘ ( ( ocv ‘ 𝑊 ) ‘ 𝑆 ) ) ) |
| 6 |
|
eqid |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) |
| 7 |
6 3
|
ocvss |
⊢ ( ( ocv ‘ 𝑊 ) ‘ 𝑆 ) ⊆ ( Base ‘ 𝑊 ) |
| 8 |
|
eqid |
⊢ ( ·𝑖 ‘ 𝑊 ) = ( ·𝑖 ‘ 𝑊 ) |
| 9 |
|
eqid |
⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) |
| 10 |
|
eqid |
⊢ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) |
| 11 |
6 8 9 10 3
|
ocvval |
⊢ ( ( ( ocv ‘ 𝑊 ) ‘ 𝑆 ) ⊆ ( Base ‘ 𝑊 ) → ( ( ocv ‘ 𝑊 ) ‘ ( ( ocv ‘ 𝑊 ) ‘ 𝑆 ) ) = { 𝑥 ∈ ( Base ‘ 𝑊 ) ∣ ∀ 𝑦 ∈ ( ( ocv ‘ 𝑊 ) ‘ 𝑆 ) ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) |
| 12 |
7 11
|
mp1i |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑆 ∈ 𝐶 ) → ( ( ocv ‘ 𝑊 ) ‘ ( ( ocv ‘ 𝑊 ) ‘ 𝑆 ) ) = { 𝑥 ∈ ( Base ‘ 𝑊 ) ∣ ∀ 𝑦 ∈ ( ( ocv ‘ 𝑊 ) ‘ 𝑆 ) ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) |
| 13 |
|
riinrab |
⊢ ( ( Base ‘ 𝑊 ) ∩ ∩ 𝑦 ∈ ( ( ocv ‘ 𝑊 ) ‘ 𝑆 ) { 𝑥 ∈ ( Base ‘ 𝑊 ) ∣ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) = { 𝑥 ∈ ( Base ‘ 𝑊 ) ∣ ∀ 𝑦 ∈ ( ( ocv ‘ 𝑊 ) ‘ 𝑆 ) ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } |
| 14 |
12 13
|
eqtr4di |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑆 ∈ 𝐶 ) → ( ( ocv ‘ 𝑊 ) ‘ ( ( ocv ‘ 𝑊 ) ‘ 𝑆 ) ) = ( ( Base ‘ 𝑊 ) ∩ ∩ 𝑦 ∈ ( ( ocv ‘ 𝑊 ) ‘ 𝑆 ) { 𝑥 ∈ ( Base ‘ 𝑊 ) ∣ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) |
| 15 |
|
cphnlm |
⊢ ( 𝑊 ∈ ℂPreHil → 𝑊 ∈ NrmMod ) |
| 16 |
15
|
adantr |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑆 ∈ 𝐶 ) → 𝑊 ∈ NrmMod ) |
| 17 |
|
nlmngp |
⊢ ( 𝑊 ∈ NrmMod → 𝑊 ∈ NrmGrp ) |
| 18 |
|
ngptps |
⊢ ( 𝑊 ∈ NrmGrp → 𝑊 ∈ TopSp ) |
| 19 |
16 17 18
|
3syl |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑆 ∈ 𝐶 ) → 𝑊 ∈ TopSp ) |
| 20 |
6 2
|
istps |
⊢ ( 𝑊 ∈ TopSp ↔ 𝐽 ∈ ( TopOn ‘ ( Base ‘ 𝑊 ) ) ) |
| 21 |
19 20
|
sylib |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑆 ∈ 𝐶 ) → 𝐽 ∈ ( TopOn ‘ ( Base ‘ 𝑊 ) ) ) |
| 22 |
|
toponuni |
⊢ ( 𝐽 ∈ ( TopOn ‘ ( Base ‘ 𝑊 ) ) → ( Base ‘ 𝑊 ) = ∪ 𝐽 ) |
| 23 |
21 22
|
syl |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑆 ∈ 𝐶 ) → ( Base ‘ 𝑊 ) = ∪ 𝐽 ) |
| 24 |
23
|
ineq1d |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑆 ∈ 𝐶 ) → ( ( Base ‘ 𝑊 ) ∩ ∩ 𝑦 ∈ ( ( ocv ‘ 𝑊 ) ‘ 𝑆 ) { 𝑥 ∈ ( Base ‘ 𝑊 ) ∣ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) = ( ∪ 𝐽 ∩ ∩ 𝑦 ∈ ( ( ocv ‘ 𝑊 ) ‘ 𝑆 ) { 𝑥 ∈ ( Base ‘ 𝑊 ) ∣ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) |
| 25 |
5 14 24
|
3eqtrd |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑆 ∈ 𝐶 ) → 𝑆 = ( ∪ 𝐽 ∩ ∩ 𝑦 ∈ ( ( ocv ‘ 𝑊 ) ‘ 𝑆 ) { 𝑥 ∈ ( Base ‘ 𝑊 ) ∣ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ) |
| 26 |
|
topontop |
⊢ ( 𝐽 ∈ ( TopOn ‘ ( Base ‘ 𝑊 ) ) → 𝐽 ∈ Top ) |
| 27 |
21 26
|
syl |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑆 ∈ 𝐶 ) → 𝐽 ∈ Top ) |
| 28 |
7
|
sseli |
⊢ ( 𝑦 ∈ ( ( ocv ‘ 𝑊 ) ‘ 𝑆 ) → 𝑦 ∈ ( Base ‘ 𝑊 ) ) |
| 29 |
|
fvex |
⊢ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ∈ V |
| 30 |
|
eqid |
⊢ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ) = ( 𝑥 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ) |
| 31 |
30
|
mptiniseg |
⊢ ( ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ∈ V → ( ◡ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ) “ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) = { 𝑥 ∈ ( Base ‘ 𝑊 ) ∣ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) |
| 32 |
29 31
|
ax-mp |
⊢ ( ◡ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ) “ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) = { 𝑥 ∈ ( Base ‘ 𝑊 ) ∣ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } |
| 33 |
|
eqid |
⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) |
| 34 |
|
simpll |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ 𝑆 ∈ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) → 𝑊 ∈ ℂPreHil ) |
| 35 |
21
|
adantr |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ 𝑆 ∈ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) → 𝐽 ∈ ( TopOn ‘ ( Base ‘ 𝑊 ) ) ) |
| 36 |
35
|
cnmptid |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ 𝑆 ∈ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) → ( 𝑥 ∈ ( Base ‘ 𝑊 ) ↦ 𝑥 ) ∈ ( 𝐽 Cn 𝐽 ) ) |
| 37 |
|
simpr |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ 𝑆 ∈ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) → 𝑦 ∈ ( Base ‘ 𝑊 ) ) |
| 38 |
35 35 37
|
cnmptc |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ 𝑆 ∈ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) → ( 𝑥 ∈ ( Base ‘ 𝑊 ) ↦ 𝑦 ) ∈ ( 𝐽 Cn 𝐽 ) ) |
| 39 |
2 33 8 34 35 36 38
|
cnmpt1ip |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ 𝑆 ∈ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) → ( 𝑥 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ) ∈ ( 𝐽 Cn ( TopOpen ‘ ℂfld ) ) ) |
| 40 |
33
|
cnfldhaus |
⊢ ( TopOpen ‘ ℂfld ) ∈ Haus |
| 41 |
|
cphclm |
⊢ ( 𝑊 ∈ ℂPreHil → 𝑊 ∈ ℂMod ) |
| 42 |
9
|
clm0 |
⊢ ( 𝑊 ∈ ℂMod → 0 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 43 |
41 42
|
syl |
⊢ ( 𝑊 ∈ ℂPreHil → 0 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 44 |
43
|
ad2antrr |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ 𝑆 ∈ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) → 0 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) |
| 45 |
|
0cn |
⊢ 0 ∈ ℂ |
| 46 |
44 45
|
eqeltrrdi |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ 𝑆 ∈ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) → ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ∈ ℂ ) |
| 47 |
|
unicntop |
⊢ ℂ = ∪ ( TopOpen ‘ ℂfld ) |
| 48 |
47
|
sncld |
⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ Haus ∧ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ∈ ℂ ) → { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ∈ ( Clsd ‘ ( TopOpen ‘ ℂfld ) ) ) |
| 49 |
40 46 48
|
sylancr |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ 𝑆 ∈ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) → { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ∈ ( Clsd ‘ ( TopOpen ‘ ℂfld ) ) ) |
| 50 |
|
cnclima |
⊢ ( ( ( 𝑥 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ) ∈ ( 𝐽 Cn ( TopOpen ‘ ℂfld ) ) ∧ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ∈ ( Clsd ‘ ( TopOpen ‘ ℂfld ) ) ) → ( ◡ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ) “ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ∈ ( Clsd ‘ 𝐽 ) ) |
| 51 |
39 49 50
|
syl2anc |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ 𝑆 ∈ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) → ( ◡ ( 𝑥 ∈ ( Base ‘ 𝑊 ) ↦ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) ) “ { ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ∈ ( Clsd ‘ 𝐽 ) ) |
| 52 |
32 51
|
eqeltrrid |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ 𝑆 ∈ 𝐶 ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ) → { 𝑥 ∈ ( Base ‘ 𝑊 ) ∣ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ∈ ( Clsd ‘ 𝐽 ) ) |
| 53 |
28 52
|
sylan2 |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ 𝑆 ∈ 𝐶 ) ∧ 𝑦 ∈ ( ( ocv ‘ 𝑊 ) ‘ 𝑆 ) ) → { 𝑥 ∈ ( Base ‘ 𝑊 ) ∣ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ∈ ( Clsd ‘ 𝐽 ) ) |
| 54 |
53
|
ralrimiva |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑆 ∈ 𝐶 ) → ∀ 𝑦 ∈ ( ( ocv ‘ 𝑊 ) ‘ 𝑆 ) { 𝑥 ∈ ( Base ‘ 𝑊 ) ∣ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ∈ ( Clsd ‘ 𝐽 ) ) |
| 55 |
|
eqid |
⊢ ∪ 𝐽 = ∪ 𝐽 |
| 56 |
55
|
riincld |
⊢ ( ( 𝐽 ∈ Top ∧ ∀ 𝑦 ∈ ( ( ocv ‘ 𝑊 ) ‘ 𝑆 ) { 𝑥 ∈ ( Base ‘ 𝑊 ) ∣ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ∈ ( Clsd ‘ 𝐽 ) ) → ( ∪ 𝐽 ∩ ∩ 𝑦 ∈ ( ( ocv ‘ 𝑊 ) ‘ 𝑆 ) { 𝑥 ∈ ( Base ‘ 𝑊 ) ∣ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ∈ ( Clsd ‘ 𝐽 ) ) |
| 57 |
27 54 56
|
syl2anc |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑆 ∈ 𝐶 ) → ( ∪ 𝐽 ∩ ∩ 𝑦 ∈ ( ( ocv ‘ 𝑊 ) ‘ 𝑆 ) { 𝑥 ∈ ( Base ‘ 𝑊 ) ∣ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑦 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) } ) ∈ ( Clsd ‘ 𝐽 ) ) |
| 58 |
25 57
|
eqeltrd |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑆 ∈ 𝐶 ) → 𝑆 ∈ ( Clsd ‘ 𝐽 ) ) |