| Step |
Hyp |
Ref |
Expression |
| 1 |
|
csscld.c |
|
| 2 |
|
csscld.j |
|
| 3 |
|
eqid |
|
| 4 |
3 1
|
cssi |
|
| 5 |
4
|
adantl |
|
| 6 |
|
eqid |
|
| 7 |
6 3
|
ocvss |
|
| 8 |
|
eqid |
|
| 9 |
|
eqid |
|
| 10 |
|
eqid |
|
| 11 |
6 8 9 10 3
|
ocvval |
|
| 12 |
7 11
|
mp1i |
|
| 13 |
|
riinrab |
|
| 14 |
12 13
|
eqtr4di |
|
| 15 |
|
cphnlm |
|
| 16 |
15
|
adantr |
|
| 17 |
|
nlmngp |
|
| 18 |
|
ngptps |
|
| 19 |
16 17 18
|
3syl |
|
| 20 |
6 2
|
istps |
|
| 21 |
19 20
|
sylib |
|
| 22 |
|
toponuni |
|
| 23 |
21 22
|
syl |
|
| 24 |
23
|
ineq1d |
|
| 25 |
5 14 24
|
3eqtrd |
|
| 26 |
|
topontop |
|
| 27 |
21 26
|
syl |
|
| 28 |
7
|
sseli |
|
| 29 |
|
fvex |
|
| 30 |
|
eqid |
|
| 31 |
30
|
mptiniseg |
|
| 32 |
29 31
|
ax-mp |
|
| 33 |
|
eqid |
|
| 34 |
|
simpll |
|
| 35 |
21
|
adantr |
|
| 36 |
35
|
cnmptid |
|
| 37 |
|
simpr |
|
| 38 |
35 35 37
|
cnmptc |
|
| 39 |
2 33 8 34 35 36 38
|
cnmpt1ip |
|
| 40 |
33
|
cnfldhaus |
|
| 41 |
|
cphclm |
|
| 42 |
9
|
clm0 |
|
| 43 |
41 42
|
syl |
|
| 44 |
43
|
ad2antrr |
|
| 45 |
|
0cn |
|
| 46 |
44 45
|
eqeltrrdi |
|
| 47 |
|
unicntop |
|
| 48 |
47
|
sncld |
|
| 49 |
40 46 48
|
sylancr |
|
| 50 |
|
cnclima |
|
| 51 |
39 49 50
|
syl2anc |
|
| 52 |
32 51
|
eqeltrrid |
|
| 53 |
28 52
|
sylan2 |
|
| 54 |
53
|
ralrimiva |
|
| 55 |
|
eqid |
|
| 56 |
55
|
riincld |
|
| 57 |
27 54 56
|
syl2anc |
|
| 58 |
25 57
|
eqeltrd |
|