Metamath Proof Explorer


Theorem sncld

Description: A singleton is closed in a Hausdorff space. (Contributed by NM, 5-Mar-2007) (Revised by Mario Carneiro, 24-Aug-2015)

Ref Expression
Hypothesis t1sep.1 X=J
Assertion sncld JHausPXPClsdJ

Proof

Step Hyp Ref Expression
1 t1sep.1 X=J
2 haust1 JHausJFre
3 1 t1sncld JFrePXPClsdJ
4 2 3 sylan JHausPXPClsdJ