Description: A singleton is closed in a Hausdorff space. (Contributed by NM, 5-Mar-2007) (Revised by Mario Carneiro, 24-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | t1sep.1 | |- X = U. J |
|
| Assertion | sncld | |- ( ( J e. Haus /\ P e. X ) -> { P } e. ( Clsd ` J ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | t1sep.1 | |- X = U. J |
|
| 2 | haust1 | |- ( J e. Haus -> J e. Fre ) |
|
| 3 | 1 | t1sncld | |- ( ( J e. Fre /\ P e. X ) -> { P } e. ( Clsd ` J ) ) |
| 4 | 2 3 | sylan | |- ( ( J e. Haus /\ P e. X ) -> { P } e. ( Clsd ` J ) ) |